TGE FT-ICR


Partenaires

CNRS
Logo Ecole Polytechnique
Logo UPS Logo UDL
Logo Sorbonne Universite Logo Universite de Lille 1
Logo Rouen Logo INSA Rouen Normandie



Accueil du site > Production scientifique > Sequence Ion Structures and Dissociation Chemistry of Deprotonated Sucrose Anions

Sequence Ion Structures and Dissociation Chemistry of Deprotonated Sucrose Anions

Date de publication: 3 octobre 2018

B. J. Bythell ; J. M. Rabus ; A. R. Wagoner ; M. T. Abutokaikah ; P. Maitre
J. Am. Soc. Mass Spectrom. 29 (12) 2380-2393 (2018). DOI

Travail réalisé sur le site de l’Université Paris Sud.

Abstract

We investigate the tandem mass spectrometry of regiospecifically labeled, deprotonated sucrose analytes. We utilize density functional theory calculations to model the pertinent gas-phase fragmentation chemistry of the prevalent glycosidic bond cleavages (B-1-Y-1 and C-1-Z(1) reactions) and compare these predictions to infrared spectroscopy experiments on the resulting B-1 and C-1 product anions. For the C-1 anions, barriers to interconversion of the pyranose [alpha-glucose-H](-), C-1 anions to entropically favorable ring-open aldehyde-terminated forms were modest (41 kJ mol(-1)) consistent with the observation of a band assigned to a carbonyl stretch at similar to 1680-1720 cm(-1). For the B-1 anions, our transition structure calculations predict the presence of both deprotonated 1,6-anhydroglucose and carbon 2-ketone ((4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)dihydro-2H-pyran-3(4H)-one) anion structures, with the latter predominating. This hypothesis is supported by our spectroscopic data which show diagnostic bands at 1600, 1674, and 1699 cm(-1) (deprotonated carbon 2-ketone structures), and at similar to 1541 cm(-1) (both types of structure) and RRKM rate calculations. The deprotonated carbon 2-ketone structures are also the lowest energy product B-1 anions.