TGE FT-ICR


Partenaires

CNRS
Logo Ecole Polytechnique Logo ESPCI
Logo UPS Logo UDL
Logo UPMC Logo Universite de Lille 1
Logo Rouen Logo INSA Rouen Normandie



Accueil du site > Production scientifique > Nitrosyl–heme and anion–arene complexes : structure, reactivity and spectroscopy

Nitrosyl–heme and anion–arene complexes : structure, reactivity and spectroscopy

Date de publication: 26 mars 2015

M.E. Crestoni, B. Chiavarino, S. Fornarini
Pure Appl. Chemistry 87 379–390 (2015). DOI

Travail réalisé sur le site de l’Université Paris Sud.

Abstract

Two topics are selected and illustrated to exemplify (i) a biological and (ii) an organic ionic intermediate. The reactivity behavior of NO adducts with ferric and ferrous hemes has shown remarkable similarities when examined in the gas phase, demonstrating that the largely different NO affinity displayed in solution and in biological media is due to the different coordination environment. In fact, ferrous hemes present a vacant or highly labile axial coordination site, prone to readily bind NO. The vibrational signatures of the NO ligand have also been probed in vacuo for the first time in the nitrosyl complexes deriving from ferrous and ferric hemes under strictly comparable five-coordination at the metal center. Negatively charged σ-adducts, from the association of anions with 1,3,5-trinitrobenzene, an exemplary π-electron-deficient arene, have been probed by IRMPD spectroscopy and found to display variable binding motifs from a strongly covalent σ-adduct (Meisenheimer complex) to a weakly covalent σ-complex, depending on the anion basicity.