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Fourier Transform
Modulus

Substance P - 1M points;  resolution ~10ppm;   SNR ~26.000  1 sec acquisition
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m/z unit

Zooming in
Substance P
1M points;
resolution ~10ppm
SNR ~26.000
1 sec acquisition
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Quel traitement de données ?

•Approche générale :
N points de mesures
P paramètres à extraire

• N > P
• l’ajustement de paramètres (le fit)
• modélisation du phénomène

• N = P
• les transformations de données  Tf () inversible ou non
• modélisation de la mesure

• N <P
• la reconstruction de données
• modélisation de la mesure et de la connaissance

ymes = Tf (s) + ✏

N P

FDM

Zero-Filling

MaxEnt
Compressed-Sensing

•Sur-résolution

•débruitage

•2D

X
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sur-resolution
•La résolution de la mesure est dominée

par la relation de Gabor-Heisenberg

•maximiser la résolution pour une acquisition donnée
Trois approches

• - ajustement
• - transformation
• - reconstruction / régularisation

•dépend du rapport signal à bruit

tmax�F = 1
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fit
# pos.ppm width Hz

1 5.24 ± 0.02 23 ± 5

2 5.18 ± 0.03 3.5 ± 0.3

...

N>P L’ajustement
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N>P L’ajustement
•modélisation du phénomène

• modèle physique du phénomène étudié
• on «ajuste» les P paramètres du modèle aux 

données mesurées 
• écart mesuré par maximum de vraisemblance

solution des «moindres carrés»

•degrés de liberté
• df = N-P

•Loi du Chi2
• moyenne = df
• maximum = df-2
• variance = 2df

ycalci = f(Pj)

⇥2 =
X

i

✓
ycalci � ymes

i

�i

◆2
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Principes
•minimiser le Chi2

• c’est une fonction convexe/quadratique ⇒ convergence rapide

• f(Pi) peut-être complexe ⇒ minimum non-unique

⇒ importance du choix des valeurs initiales

•Dans la pratique
• utiliser une bibliothèque toute faite !

• pour chaque paramètre ajusté on peut estimer l’erreur à partir de la matrice de 
covariance

Returns
popt : array

Optimal values for the parameters so that the sum of the squared error of f(xdata,
*popt) - ydata is minimized

pcov : 2d array

The estimated covariance of popt. The diagonals provide the variance of the param-
eter estimate.

curve_fit(f, xdata, ydata, **kw[, p0, sigma]) Use non-linear least squares to fit a function, f, to data.

f, xdata, ydata, p0=None, sigma=None, **kw
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un exemple moins trivial

•Modèle AR : autoregressif
• signal : somme de n sinusoides amorties exponentiellement

•Filter Diagonalization Method
• equivalent à un fit dans les données temporelles
• méthode intelligente pour choisir les valeurs initiales; convergence optimisée

Aizikov et O'Connor. J.Am. Soc.Mass Spec. (2006) 17 (6) pp. 836-843

dance ratios even when the transient length is only 1 ms
(Table 1e). This aspect of FDM algorithm could be
particularly useful for mass spectrometry of short-lived
radionuclides [38].

In general, the peak merging is a result of the
violation of inequality eq 13. These merged peaks can
be thought of as poorly resolved peaks [23]. The merg-
ing is accompanied by increase in error (Table 1), or the
difference between the peaks recovered by the overlap-
ping Kwin. This error serves as an uncertainty measure
and has been used to filter out the spurious peaks [21].
Note that, even with a 1 ms transient, the monoisotopic
peak at 158,906.79 Hz is resolved almost exactly with an
error of !7*10"4 ppm. In general, as long as condition
eq 13 holds the FDM is capable of achieving TinfiniteU
resolution [20], with errors only due to noise and
inherent computational round off errors.

Although FDM performance in terms of accuracy on
signals with no frequency modulation is by far superior to
that of FFT, FDM, whose main assumption is that the
resonant states are stable, does not perform that well
when frequency shifts are substantial. Thus, it generally
fails to provide better mass accuracy when used in place
of FFT on real FTMS signals. However, the ability to lock
in on frequencies in extremely short transients (as seen in

the previous example, Figure 2) implies that FDM is a
good tool for studying frequency shifts during FTMS
experiments. To test the performance of FDM in following
shifts through a transient, a theoretical signal of 0.5 s
length was generated, where 140,080.1276 Hz frequency
was modulated through 0.0005 Hz (3.6 ppb) with a
frequency of 10 Hz (Figure 3), and sampled at 1MHzwith
signal to noise ratio of 2 in the time domain. The frequency
chasing experiment was performed with 0.5 millisecond
(500 data points) transient domains stepping 200 data
points into the raw data. While the signal to noise ratio of
2 in the theoretical signal, input to the FDM algorithm,
clearly resulted in some noise in the output, the FDMwas
able to create an output signal that reproduced the fre-
quency versus time plot from Figure 3a with sub ppb
accuracy. Note, that FDM also generated several spurious
glitches, which were discussed above.

The same frequency chasing experiments were con-
ducted on a real Substance P spectrum (Figure 4)
chasing the three major isotopic peaks using 20 milli-
second transient domains (20,000 data points) stepping
200 data points into the transient for each FDM calcu-
lation through the first 0.5 S of the transient. This
calculation produced the frequency shift plots in Figure
5 for the A # 2, A # 1, and A ion peaks of the isotopic

Figure 2. Frequency spectrum recovered from the first (a) 1M, (b) 0.5 M, (c) 0.25M, (d) 0.1M, (e)
0.01M, and (f) 1000 data points of the transient signal in Figure 1b using the FFT (left) and using the
FDM (right). The FDM TspectrumU is constructed from a Lorentzian fit to the peak list from Table 1.

839J Am Soc Mass Spectrom 2006, 17, 836-843 FILTER DIAGONALIZATION METHOD IN FT-ICR
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Modèle AutoRegressif

rQR algorithm,an alternative to Cadzow denoising algorithm

Lionel Chiron and Marc-André Delsuc
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC),
UMR 7104, 1 rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France

(Dated: February 1, 2012)

We present here a significant alternative to Cadzow denoising algorithm where the central trun-
cated SVD operation is replaced by a matrix approximation. It is shown that this new algorithm
allows an impressive improvement both in speed and in denoising quality while paradoxically the
method is not deterministic. rQR algorithm appears to be more flexible than Cadzow for which the
choice of the rank for the same accuracy is much more constrained.

PACS numbers:

INTRODUCTION

A large number of denoising methods during the last
decennies were proposed. In the state-of-the-art can be
cited methods among which wavelet transforms, Maxi-
mum entropy methods, Bayesian and maximum likeli-
hood techniques, genetic algorithms , linear prediction
etc... In the framework of linear prediction, Autoregres-
sive models (AR) methods can be highlighted for their
rosbustness and simplicity. They consist in expressing
the ouput of the system from the previous outputs. They
are used in many areas : speech recognigtion, seismology,
spectral analysis, signal restoration.

[3]
The paper is organized as follows :

1. Linear prediction

2. Cadzow algorithm

3. New algorithm rQR

4. Results

5. Discussion

Model-based Linear prediction

For using linear prediction the signal as to be sampled
at regular times in time-series. The Autoregressive model
(or process) relies on that time-series can be decomposed
on a finite number of damped sinusoids. This assumption
allows if the model is correct to achieve nice spectral
resolutions. The decomposition of a time series x on P
poles is written as for the lth element:

xl =
P⌥

p=1

�p(zp)
l (1)

where

zp = e�p+j⇥p (2)

zp parameters are its damping factor⇥p and ⇤p its fre-
quency. Seen in the complex plane, zp are spread inside
the unit circle
The poles zp can be expressed as the roots of a polynom.

K(z) =
P�

p=1

(z � zp) (3)

When nulling the polynom on one of the poles, it leads
to the expression of the pole as a linear combination of its
powers which coe⇥cient bm are called the autoregressive
parameters.

(zp)
l = �

P⌥

m=1

bm(zp)
l�m (4)

from 1 and 4 rewrite the time-series as an autoregres-
sive process.

xl = �
P⌥

m=1

bmxl�m (5)

This property of the time-series of length L can be
expressed in the form of a Hankel matrix :

�

⇧⇧⇧⇧⇧⇧⇤

x1 x2 ... xP

x2 x3 ... xP+1

x3 x4 ... xP+2

x4 x5 ... .
. . ... .

xL�P xL�P+1 ... xL�1

⇥

⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇤

bP
bP�1

bP�2

.
b1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

xP+1

xP

xP�1

.
xL

⇥

⌃⌃⌃⌃⌅

This matrix H is composed of P linearly independant
columns vectors. In this case, the rank k of the matrix H
(the number of linearly independant vectors) is equal to
the number P of poles. The singular value decomposition
(SVD) of H gives P singular values. Generally we don’t
know how many damped sinusoid define completely the
signal represented by the time-series and the assumption

xn =
KX

k=1

brxn�k

Hb = x

•Equation de Prédiction Linéaire (LP)
• ⇔ somme de K sinusoïdes amorties

• expression matricielle du problème LP

• H est décomposée pour extraire les fréquences
valeurs propres, valeurs singulières, 

• Les intensités sont mesurées dans un deuxième temps
par un moindre carré standard  ( Méthode de Prony)

Matrice de Hankel

Prony, R. Essai Expérimental et Analytique... J. de l'Ecole Polytechnique (Paris) 1, 24–76 (1795).
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Et le principe d’incertitude ?
•                          ?

• modélisation du signal
• nombre de signaux
• forme des signaux

• Information a-priori

0 2 4 6 8 10 12 14

-1

1

tmax =
1

�F
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N=P  la notion de transformée
•changement de point de vue

• Typique des spectroscopies par FT (mais plus..)
spectroscopies : NMR,  FT-ICR,  FT-IR,  ...
images : IRM,  jpeg

•On modèle le processus de mesure
notions de spectre  / de fonction de mesure
notion de fonction d’instrument (réponse impulsionelle - points manquants) -...
hypothèse linéaire

•le problème au moindre carré
• trouver   ̃s le plus proche possible de s

tel que 

• la solution «triviale» est - ou n’est pas - la solution

ymes = Tf (s) + �

s̃ = T�1
f (ymes)

⇥2 =
X✓

Tf (s)� ymes

�

◆2
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il existe différentes transformées
• transformée de Fourier

• inversible

• transformée d’Hadamard
• sorte de transformée de Fourier sur  {-1, 1}
• inversible

• transformée de Hilbert
• la transformée qui transforme un signal réel

en la partie imaginaire du signal analytique
• calculée via la transformée de Fourier
• inversible

• transformée de Laplace
• transformée sur les fonctions exponentielles
• non-inversible

• transformée de Radon
• transformée sur les fonctions projection
• non-inversible

• ...

Brief Article

The Author

May 14, 2006
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FID on 4k,
500 MHz NMR Spectrometer

quelques exemples...
spectre RMN 1D de la strychnine
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1

Zero-filling et apodisation
• apodisation arche de sinus
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Petite considération sur le zero-filling
• comment ne pas perdre d’information

1 valeur == 1 élément d’information
• ne pas faire

FID : N points réels                        N valeurs indépendantes
FT(FID) : N/2 points complexes      N valeurs indépendantes

ou N points complexes                         2N valeurs non-indépendantes
module : N/2 points réels               N/2 valeurs indépendantes

• faire
FID : N points réels                        N valeurs indépendantes
Zero-Filling  + N zéro                     N non-nulles
FT(FID) : 2N points complexes       2N valeurs non-indépendantes
module : N points réels                  N valeurs indépendantes

rule of thumb :

always zero-fi" at least once
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autres apodisations
• en mode phase sensible

• apodisation “gaussienne”
• déconvolution par une lorentzienne - reconvolution par une gaussienne

GB = 1Hz
LB = - GB

phase-sensible

GB = 1Hz
LB = - 2.5 GB

e
t

LB e
�t2
GB
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N<P  la régularisation

•En fait très courant
• en FT : «zerofilling» : faire la transformée en rajoutant des zeros
• en image : interpolation

nouvelles télés !

•On reconstruit l’image    la plus «jolie» possible

•Il faut un critère de beauté
• information a-priori sur la mesure / sur les données

Moins de points dans les données (N) que dans l’analyse (P)   ???

s̃
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Position du problème
•modèle de mesure

•fonction cible à minimiser
• insuffisant pour trouver une solution unique

•critère supplémentaire
• fonction de régulation à optimiser  : R(s)

•Optimisation
• miniser χ2 sous la contrainte de R(s) minimum

ymes = Tf (s) + �

⇥2 =
X✓

Tf (s)� ymes

�

◆2

⇥2(s) + �R(s)
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Plusieurs possibilités:
•minimiser l’énergie E

•régularisation de Tikhonov T 
• (Γ opération linéaire) : courbure - smoothness - ...

•maximiser l’entropie S
• le spectre «le plus probable» 
• le spectre qui a le moins d’«information» (sens de Shanon)

•maximiser la simplicité
• la parcimonie : le nombre de signaux au dessus du bruit.

E =
X

(s2i )

S = �
X

(si log(si))

T =
X

(�(s)2i )
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principe de l’approche inverse

données experimentales

spectre s
données recalculées

Tf

distance
�2 =

X
(
dr

i � de
i

�i
)2
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Signal Entropy

•Among all the spectra which adapt the data down to the 
noise, I choose :

• the one with the minimum information
(Shannon sense)

• the most probable
• => the one which maximize the signal entropy

pi =
fiP
fi

withS = �
X

pi log(pi)
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extension par approche inverse

données recalculées

données expérimentales tronquées

Tf

Spectre MaxEnt

 χ2  calculé sur les données mesurées
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quelques exemples...

Gauss 2 Hz

MaxEnt 2 Hz

MaxEnt 1 Hz
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MaxEnt 1 Hz

FID trunc. to 1k

quelques exemples...

MaxEnt 2 Hz
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Échantillonage partiel vu comme une convolution

données classiques

fonction
d’échanti!onage
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Échantillonage partiel / une convolution

données recalculées

données experimentales

fonction
d’échantillonage

X
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strychnine encore ...

FT
FID trunc. to 1k

MaxEnt - 1Hz 
FID trunc. to 1k

MaxEnt - 1Hz 
FID partially sampled 
1k out of 4k
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uniform sampling required by conventional Fourier methods of 
spectrum analysis.

A variety of approaches for overcoming this sampling problem 
have been introduced, including Bayesian and maximum likelihood 
(MLM)1,2, maximum entropy (MaxEnt)3–6, reduced dimensional-
ity (RD)7 and G-matrix Fourier transform (GFT)8, back-projection 
reconstruction (BPR)9, multidimensional decomposition (MDD)10, 
and nonuniform discrete Fourier transformation11–13. Each realizes 
higher resolution along indirect dimensions by collecting samples 
at long evolution times without collecting samples at every integer 
multiple of the sampling interval. The artifacts that can occur with 
these methods tend to reflect the particular strategy used for non-
uniform sampling14.

MaxEnt reconstruction has several advantages over the other 
methods. As it makes no assumptions regarding the signals, it is 
more robust (especially for low S/N) than methods that do make 
assumptions (such as Bayesian, MLM and MDD). In contrast to 
GFT and BPR, MaxEnt can use essentially arbitrary nonuniform 
sampling. MaxEnt can also be used for deconvolution to achieve 
additional resolution enhancement or virtual decoupling15. Efficient 
algorithms for MaxEnt reconstruction have been developed16,17, and 
their properties have been extensively investigated. But despite more 
than three decades of implementation, the use of MaxEnt has been 

limited to several expert laboratories, in part because of the need to 
specify adjustable parameters. These parameters are an estimate of 
the noise level in the data and a scale factor related to the sensitivity 
of the spectrometer18. The latter is difficult to determine empirically, 
as it depends on many factors.

Fortunately the results of MaxEnt are not overly sensitive to 
the value of the scale factor. A useful heuristic is to choose a value 
larger than the noise but smaller than the weakest peak. We have 
implemented a web-based script generator (Supplementary Fig. 1 
online) that implements the heuristic via the Rowland NMR 
Toolkit15 to automatically determine the noise level and appro-
priately set the MaxEnt reconstruction parameters. The results of 
automatic MaxEnt reconstruction of two- and three-dimensional 
spectra of a 20 kDa protein, DNA polymerase X (ref. 19), as com-
pared to conventional processing, are illustrated in Figure 1. This 
automated procedure for MaxEnt reconstruction should make the 
method accessible to a much broader cross-section of the biomo-
lecular NMR community.

The script generator and the Rowland NMR Toolkit are available 
to academic and nonprofit organizations without charge (http://
sbtools.uchc.edu/nmr/).

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | Automated MaxEnt reconstruction can dramatically reduce data 
collection time or improve resolution. (a–d) 15N heteronuclear single 
quantum correlation (HSQC; a,b) and HNCO (c,d) spectra are shown for DNA 
polymerase X obtained using conventional processing (linear-prediction 
extrapolation and sinebell apodization; a,c), and automated MaxEnt 
reconstruction using linewidth deconvolution to improve resolution without 
the sensitivity losses characteristic of apodization (b), and nonuniform 
sampling to achieve a sevenfold reduction in data acquisition time (d). Two-
dimensional cross-sections of the three-dimensional spectrum in c and d 
correspond to the 15N frequency indicated by the dashed lines in a and b.
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uniform sampling required by conventional Fourier methods of 
spectrum analysis.

A variety of approaches for overcoming this sampling problem 
have been introduced, including Bayesian and maximum likelihood 
(MLM)1,2, maximum entropy (MaxEnt)3–6, reduced dimensional-
ity (RD)7 and G-matrix Fourier transform (GFT)8, back-projection 
reconstruction (BPR)9, multidimensional decomposition (MDD)10, 
and nonuniform discrete Fourier transformation11–13. Each realizes 
higher resolution along indirect dimensions by collecting samples 
at long evolution times without collecting samples at every integer 
multiple of the sampling interval. The artifacts that can occur with 
these methods tend to reflect the particular strategy used for non-
uniform sampling14.

MaxEnt reconstruction has several advantages over the other 
methods. As it makes no assumptions regarding the signals, it is 
more robust (especially for low S/N) than methods that do make 
assumptions (such as Bayesian, MLM and MDD). In contrast to 
GFT and BPR, MaxEnt can use essentially arbitrary nonuniform 
sampling. MaxEnt can also be used for deconvolution to achieve 
additional resolution enhancement or virtual decoupling15. Efficient 
algorithms for MaxEnt reconstruction have been developed16,17, and 
their properties have been extensively investigated. But despite more 
than three decades of implementation, the use of MaxEnt has been 

limited to several expert laboratories, in part because of the need to 
specify adjustable parameters. These parameters are an estimate of 
the noise level in the data and a scale factor related to the sensitivity 
of the spectrometer18. The latter is difficult to determine empirically, 
as it depends on many factors.

Fortunately the results of MaxEnt are not overly sensitive to 
the value of the scale factor. A useful heuristic is to choose a value 
larger than the noise but smaller than the weakest peak. We have 
implemented a web-based script generator (Supplementary Fig. 1 
online) that implements the heuristic via the Rowland NMR 
Toolkit15 to automatically determine the noise level and appro-
priately set the MaxEnt reconstruction parameters. The results of 
automatic MaxEnt reconstruction of two- and three-dimensional 
spectra of a 20 kDa protein, DNA polymerase X (ref. 19), as com-
pared to conventional processing, are illustrated in Figure 1. This 
automated procedure for MaxEnt reconstruction should make the 
method accessible to a much broader cross-section of the biomo-
lecular NMR community.

The script generator and the Rowland NMR Toolkit are available 
to academic and nonprofit organizations without charge (http://
sbtools.uchc.edu/nmr/).

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | Automated MaxEnt reconstruction can dramatically reduce data 
collection time or improve resolution. (a–d) 15N heteronuclear single 
quantum correlation (HSQC; a,b) and HNCO (c,d) spectra are shown for DNA 
polymerase X obtained using conventional processing (linear-prediction 
extrapolation and sinebell apodization; a,c), and automated MaxEnt 
reconstruction using linewidth deconvolution to improve resolution without 
the sensitivity losses characteristic of apodization (b), and nonuniform 
sampling to achieve a sevenfold reduction in data acquisition time (d). Two-
dimensional cross-sections of the three-dimensional spectrum in c and d 
correspond to the 15N frequency indicated by the dashed lines in a and b.
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calculations are computationally costly (that is, efficiency is low). 
Modern large-scale ∆∆G prediction methods use heuristic algo-
rithms with effective force fields and empirical parameters to 
estimate the stability changes caused by mutations in agreement 
with experimental data2–5. There are, however, two considerable 
drawbacks pertinent to the heuristic methods. First, most of these 
prediction methods rely on parameter training using available 
experimental ∆∆G data. Such training is usually biased toward 
mutations that feature large-to-small residue substitutions, such 
as alanine-scanning experiments (that is, poor transferability). 
Second, protein backbone flexibility, which is crucial for resolv-
ing atomic clashes and backbone strains in mutant proteins, is 
not considered in these methods, thereby reducing accuracy and 
limiting the application of heuristic methods (that is, limited 
applicability).

To address the issues of efficiency, transferability and appli-
cability, we developed the Eris method, which uses a physi-
cal force field with atomic modeling as well as fast side-chain 
packing and backbone relaxation algorithms. The free energy is 
expressed as a weighted sum of van der Waals forces, solvation, 
hydrogen bonding and backbone-dependent statistical energies6 
(Supplementary Methods online). The weighting parameters 
are independently trained to recapitulate the native amino acid 
sequences for 34 proteins using high-resolution X-ray struc-
tures6. Additionally, an integral step of Eris is backbone relax-
ation when severe atom clashes or backbone strains are detected 
during calculation.

We tested Eris on 595 mutants from five proteins, for which 
the ∆∆G values were documented (Fig. 1a). We found signifi-
cant agreement between the predicted and measured ∆∆G values 
with a correlation coefficient of 0.75 (P = 2 × 10−108). The cor-
relation between the predictions and experiments is comparable 
to that reported using other methods2–5. Unlike previous meth-
ods, Eris also has high predictive power for small-to-large3 side-
chain-size mutations (Fig. 1b,c), owing to its ability to effectively 

relax backbone structures and resolve 
clashes introduced by mutations. 
As a direct comparison with other 
methods, we computed the stability 
changes of the small-to-large muta-
tions using Eris and other web-based 
stability prediction servers. We found 
that Eris outperformed other available 
servers (Supplementary Discussion 
and Supplementary Tables 1 and 2 
online). Additionally, Eris features 
a protein structure pre-relaxation 
option, which remarkably improves 
the prediction accuracy when a high-
resolution protein structure is not 
available (Supplementary Discussion 
and Supplementary Fig. 1 online).

Our test validates the unbiased force 
field, side-chain packing and back-
bone relaxation algorithms in Eris. 
We anticipate Eris will be applicable 
to examining a much larger variety of 
mutations during protein engineer-
ing. We built a web-based Eris server 

for ∆∆G estimation. The server is freely accessible online (http://
eris.dokhlab.org).

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | Performance of Eris. (a) Scatter plot of ∆∆G calculations using Eris. The ∆∆G of 595 mutants were 
calculated and compared with experimental measurements. The Pearson correlation coefficient was 0.75 
(P = ~10−108) and the r.m.s. deviation between the experimental and computed ∆∆G values was 2.4 kcal/mol. 
The solid line corresponds to linear regression fit to the data points. (b) Correlation coefficients between the 
calculated and experimental ∆∆Gs for three different classes of mutations based on the change in the number 
of side-chain χ angles (∆nχ). The mutations with ∆nχ < 0 are associated with large-to-small mutations and 
those with ∆nχ ≥ 0 correspond to mutation to residues of the same or larger sizes. The flexible- and fixed-
backbone methods have the same prediction accuracy for ∆nχ < 0. However, the flexible-backbone ∆∆G 
prediction correlates better with experiments for ∆nχ ≥ 0 cases, owing to its ability to resolve possible side-
chain clashes. (c) The backbone structures of wild-type and A130K mutant apomyoglobin proteins. The mutant 
structure is obtained from a flexible-backbone calculation. The N-terminal helix of the A130K apomyoglobin 
bends ~0.2 Å outward to accommodate the larger lysine side chain (green).

An automated tool for maximum 
entropy reconstruction of biomolecular 
NMR spectra

To the editor: High resolution is essential for successful applica-
tion of NMR spectroscopy to biomolecules, but involves a classic 
‘catch-22’. High magnetic fields increase chemical shift disper-
sion, thus increasing resolution and reducing spectral overlap, 
but the required increase in sampling rate (to avoid aliasing) 
means longer acquisition times in the indirect dimensions of 
multidimensional experiments (indirect dimensions are sam-
pled by iteration, whereas the lone ‘direct’ dimension is sampled 
in real time). Consequently the potential resolution afforded 
by high magnetic fields is rarely realized in the indirect dimen-
sions. There is a growing realization that this is a consequence of 
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calculations are computationally costly (that is, efficiency is low). 
Modern large-scale ∆∆G prediction methods use heuristic algo-
rithms with effective force fields and empirical parameters to 
estimate the stability changes caused by mutations in agreement 
with experimental data2–5. There are, however, two considerable 
drawbacks pertinent to the heuristic methods. First, most of these 
prediction methods rely on parameter training using available 
experimental ∆∆G data. Such training is usually biased toward 
mutations that feature large-to-small residue substitutions, such 
as alanine-scanning experiments (that is, poor transferability). 
Second, protein backbone flexibility, which is crucial for resolv-
ing atomic clashes and backbone strains in mutant proteins, is 
not considered in these methods, thereby reducing accuracy and 
limiting the application of heuristic methods (that is, limited 
applicability).

To address the issues of efficiency, transferability and appli-
cability, we developed the Eris method, which uses a physi-
cal force field with atomic modeling as well as fast side-chain 
packing and backbone relaxation algorithms. The free energy is 
expressed as a weighted sum of van der Waals forces, solvation, 
hydrogen bonding and backbone-dependent statistical energies6 
(Supplementary Methods online). The weighting parameters 
are independently trained to recapitulate the native amino acid 
sequences for 34 proteins using high-resolution X-ray struc-
tures6. Additionally, an integral step of Eris is backbone relax-
ation when severe atom clashes or backbone strains are detected 
during calculation.

We tested Eris on 595 mutants from five proteins, for which 
the ∆∆G values were documented (Fig. 1a). We found signifi-
cant agreement between the predicted and measured ∆∆G values 
with a correlation coefficient of 0.75 (P = 2 × 10−108). The cor-
relation between the predictions and experiments is comparable 
to that reported using other methods2–5. Unlike previous meth-
ods, Eris also has high predictive power for small-to-large3 side-
chain-size mutations (Fig. 1b,c), owing to its ability to effectively 

relax backbone structures and resolve 
clashes introduced by mutations. 
As a direct comparison with other 
methods, we computed the stability 
changes of the small-to-large muta-
tions using Eris and other web-based 
stability prediction servers. We found 
that Eris outperformed other available 
servers (Supplementary Discussion 
and Supplementary Tables 1 and 2 
online). Additionally, Eris features 
a protein structure pre-relaxation 
option, which remarkably improves 
the prediction accuracy when a high-
resolution protein structure is not 
available (Supplementary Discussion 
and Supplementary Fig. 1 online).

Our test validates the unbiased force 
field, side-chain packing and back-
bone relaxation algorithms in Eris. 
We anticipate Eris will be applicable 
to examining a much larger variety of 
mutations during protein engineer-
ing. We built a web-based Eris server 

for ∆∆G estimation. The server is freely accessible online (http://
eris.dokhlab.org).

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | Performance of Eris. (a) Scatter plot of ∆∆G calculations using Eris. The ∆∆G of 595 mutants were 
calculated and compared with experimental measurements. The Pearson correlation coefficient was 0.75 
(P = ~10−108) and the r.m.s. deviation between the experimental and computed ∆∆G values was 2.4 kcal/mol. 
The solid line corresponds to linear regression fit to the data points. (b) Correlation coefficients between the 
calculated and experimental ∆∆Gs for three different classes of mutations based on the change in the number 
of side-chain χ angles (∆nχ). The mutations with ∆nχ < 0 are associated with large-to-small mutations and 
those with ∆nχ ≥ 0 correspond to mutation to residues of the same or larger sizes. The flexible- and fixed-
backbone methods have the same prediction accuracy for ∆nχ < 0. However, the flexible-backbone ∆∆G 
prediction correlates better with experiments for ∆nχ ≥ 0 cases, owing to its ability to resolve possible side-
chain clashes. (c) The backbone structures of wild-type and A130K mutant apomyoglobin proteins. The mutant 
structure is obtained from a flexible-backbone calculation. The N-terminal helix of the A130K apomyoglobin 
bends ~0.2 Å outward to accommodate the larger lysine side chain (green).
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‘catch-22’. High magnetic fields increase chemical shift disper-
sion, thus increasing resolution and reducing spectral overlap, 
but the required increase in sampling rate (to avoid aliasing) 
means longer acquisition times in the indirect dimensions of 
multidimensional experiments (indirect dimensions are sam-
pled by iteration, whereas the lone ‘direct’ dimension is sampled 
in real time). Consequently the potential resolution afforded 
by high magnetic fields is rarely realized in the indirect dimen-
sions. There is a growing realization that this is a consequence of 
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uniform sampling required by conventional Fourier methods of 
spectrum analysis.

A variety of approaches for overcoming this sampling problem 
have been introduced, including Bayesian and maximum likelihood 
(MLM)1,2, maximum entropy (MaxEnt)3–6, reduced dimensional-
ity (RD)7 and G-matrix Fourier transform (GFT)8, back-projection 
reconstruction (BPR)9, multidimensional decomposition (MDD)10, 
and nonuniform discrete Fourier transformation11–13. Each realizes 
higher resolution along indirect dimensions by collecting samples 
at long evolution times without collecting samples at every integer 
multiple of the sampling interval. The artifacts that can occur with 
these methods tend to reflect the particular strategy used for non-
uniform sampling14.

MaxEnt reconstruction has several advantages over the other 
methods. As it makes no assumptions regarding the signals, it is 
more robust (especially for low S/N) than methods that do make 
assumptions (such as Bayesian, MLM and MDD). In contrast to 
GFT and BPR, MaxEnt can use essentially arbitrary nonuniform 
sampling. MaxEnt can also be used for deconvolution to achieve 
additional resolution enhancement or virtual decoupling15. Efficient 
algorithms for MaxEnt reconstruction have been developed16,17, and 
their properties have been extensively investigated. But despite more 
than three decades of implementation, the use of MaxEnt has been 

limited to several expert laboratories, in part because of the need to 
specify adjustable parameters. These parameters are an estimate of 
the noise level in the data and a scale factor related to the sensitivity 
of the spectrometer18. The latter is difficult to determine empirically, 
as it depends on many factors.

Fortunately the results of MaxEnt are not overly sensitive to 
the value of the scale factor. A useful heuristic is to choose a value 
larger than the noise but smaller than the weakest peak. We have 
implemented a web-based script generator (Supplementary Fig. 1 
online) that implements the heuristic via the Rowland NMR 
Toolkit15 to automatically determine the noise level and appro-
priately set the MaxEnt reconstruction parameters. The results of 
automatic MaxEnt reconstruction of two- and three-dimensional 
spectra of a 20 kDa protein, DNA polymerase X (ref. 19), as com-
pared to conventional processing, are illustrated in Figure 1. This 
automated procedure for MaxEnt reconstruction should make the 
method accessible to a much broader cross-section of the biomo-
lecular NMR community.

The script generator and the Rowland NMR Toolkit are available 
to academic and nonprofit organizations without charge (http://
sbtools.uchc.edu/nmr/).

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | Automated MaxEnt reconstruction can dramatically reduce data 
collection time or improve resolution. (a–d) 15N heteronuclear single 
quantum correlation (HSQC; a,b) and HNCO (c,d) spectra are shown for DNA 
polymerase X obtained using conventional processing (linear-prediction 
extrapolation and sinebell apodization; a,c), and automated MaxEnt 
reconstruction using linewidth deconvolution to improve resolution without 
the sensitivity losses characteristic of apodization (b), and nonuniform 
sampling to achieve a sevenfold reduction in data acquisition time (d). Two-
dimensional cross-sections of the three-dimensional spectrum in c and d 
correspond to the 15N frequency indicated by the dashed lines in a and b.
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Compressed Sensing
•Maximiser la “parcimonie” du signal

• la simplicité
• minimiser la somme de abs(xi)
• K : nombre de signaux non nul

•Nécessite certaine conditions
• sur la fonction de transfer

inversible
RIP

•Alors la reconstruction peut-être exacte (si pas de bruit)
• papier E.Candès et T.Tao 2006
• example
• SL0

K << N < P
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7.2. Software. In the spirit of reproducible research [26], a Matlab version of
NESTA will be made available at: http://www.acm.caltech.edu/

~

nesta/
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Abstract

This paper considers the model problem of reconstructing an object from incomplete
frequency samples. Consider a discrete-time signal f 2 C

N and a randomly chosen set
of frequencies ⌦. Is it possible to reconstruct f from the partial knowledge of its Fourier
coe�cients on the set ⌦?

A typical result of this paper is as follows. Suppose that f is a superposition of |T |
spikes f(t) =

P
⌧2T f(⌧) �(t� ⌧) obeying

|T |  CM · (log N)�1 · |⌦|,

for some constant CM > 0. We do not know the locations of the spikes nor their
amplitudes. Then with probability at least 1�O(N�M ), f can be reconstructed exactly
as the solution to the `1 minimization problem

min
g

N�1X

t=0

|g(t)|, s.t. ĝ(!) = f̂(!) for all ! 2 ⌦.

In short, exact recovery may be obtained by solving a convex optimization problem.
We give numerical values for CM which depend on the desired probability of success.

Our result may be interpreted as a novel kind of nonlinear sampling theorem. In
e↵ect, it says that any signal made out of |T | spikes may be recovered by convex
programming from almost every set of frequencies of size O(|T | · log N). Moreover, this
is nearly optimal in the sense that any method succeeding with probability 1�O(N�M )
would in general require a number of frequency samples at least proportional to |T | ·
log N .

The methodology extends to a variety of other situations and higher dimensions.
For example, we show how one can reconstruct a piecewise constant (one- or two-
dimensional) object from incomplete frequency samples—provided that the number of
jumps (discontinuities) obeys the condition above—by minimizing other convex func-
tionals such as the total variation of f .

Keywords. Random matrices, free probability, sparsity, trigonometric expansions, uncertainty
principle, convex optimization, duality in optimization, total-variation minimization, image recon-
struction, linear programming.
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A Surprising Experiment*

FT
!

Randomly throw away 83% 
of samples

* E.J. Candes, J. Romberg and T. Tao.

Deconvolution and 
Compressed Sensing

Jean-Luc Starck, Florent Sureau
J. Bobin, N. Barbey,  A. Woiselle
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A Surprising Result*
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•régulation : données simples/creuses - sparsity -
• K signaux - N mesures - P points dans le spectres
• hypothèse de peu de signaux :    K<<N<<P

•Le problème devient une simple optimisation convexe

• norme l1 ou lO   mais  pas l2

•Dans certaines conditions
• R.I.P.
• dispersion     (FT par exemple)
• pseudo-inversible
• linéaire

Compressed Sensing

min(ksk1) avec ky � Tsk2 < �

Restricted Isometry Property

ksk1 =
X

|si| kskp =
⇣X

sp
⌘ 1

p
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En exemple LIVE

Comparaison minimisation L1 vs L2

avec bruit gaussien avec bruit gaussien
+ points abérants
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échantillonnage extrême

interferogramme         P = 5000
taille de la mesure      N=300
N << P
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Un exemple

échantillonage d’un interférogramme très lacunaire
reconstruction de données par algorithme SL0
G Mohimani, M Babaie-Zadeh, C Jutten
ICASSP 2008. IEEE International Conference on (2008) pp. 3881-3884

taille du spectre         P = 5000
taille de la mesure     N=300
nombre de signaux    K=100

K < N << P
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C’est assez fort !

ar
X

iv
:1

10
3.

36
43

v1
  [

ph
ys

ic
s.o

pt
ic

s]
  1

8 
M

ar
 2

01
1

Scattering Lens Resolves sub-100 nm Structures with Visible Light

E.G. van Putten,1 D. Akbulut,1 J. Bertolotti,2, 1 W.L. Vos,1 A. Lagendijk,1, 3 and A.P. Mosk1

1Complex Photonic Systems, Faculty of Science and Technology and MESA+ Institute for
Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

2University of Florence, Dipartimento di Fisica, 50019 Sesto Fiorentino, Italy
3FOM Institute for Atomic and Molecular Physics (AMOLF),
Science Park 104, 1098 XG Amsterdam, The Netherlands

(Dated: March 21, 2011)

The smallest structures that conventional lenses are able to optically resolve are of the order of
200 nm. We introduce a new type of lens that exploits multiple scattering of light to generate a
scanning nano-sized optical focus. With an experimental realization of this lens in gallium phosphide
we have succeeded to image gold nanoparticles at 97 nm optical resolution. Our work is the first
lens that provides a resolution in the nanometer regime at visible wavelengths.

Many essential structures in nanoscience and nan-
otechnology, such as cellular organelles, nanoelectronic
circuits, and photonic structures, have spatial features
in the order of 100 nm. The optical resolution of con-
ventional lenses is limited to approximately 200 nm by
their numerical aperture and therefore they cannot re-
solve nanostructure. With fluorescence based imaging
methods it is possible to reconstruct an image of objects
that are a substantial factor smaller than the focus size by
exploiting the photophysics of extrinsic fluorophores.[1–
5] Their resolution strongly depends on the shape of the
optical focus, which is determined by conventional lens
systems. This dependence makes them vulnerable to fo-
cal distortion by scattering. Moreover, its not always fea-
sible or desirable to dope the object under study. Other
imaging methods improve their resolution by reconstruct-
ing the evanescent waves that decay exponentially with
distance from the object. Intricate near field microscopes
bring fragile nano-sized probes in close proximity of the
object where the evanescent field is still measurable.[6]
With this technique it is hard to quantify the interaction
between the short-lived tip and the structure. Metama-
terials, which are meticulously nanostructured artificial
composites, can be engineered to access the evanescent
waves and image sub-wavelength structures[7] as demon-
strated with superlenses[8] and hyperlenses[9] in the UV.
These materials physically decrease the focus size, which
brings the possibility for improvement of both linear and
non-linear imaging techniques. In the especially relevant
visible range of the spectrum, plasmonic metamaterials
can be used to produce nano-sized isolated hot spots[10–
12] but the limited control over their position makes them
unsuitable for imaging. Up to now, a freely scannable
nano-sized optical focus has not been demonstrated.

In this Letter we introduce a new type of lens that gen-
erates a scanning nano-sized optical focus. We used this
lens to image a collection of gold nanoparticles at 97 nm
optical resolution. The lens exploits multiple scattering
of light in a porous high refractive index material to in-
crease the numerical aperture of the system; a principle
we name High Index Resolution Enhancement by Scat-
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Figure 1: (A) Principle of light coupling to high transversal
k-vectors into a high-index material. Without scattering re-
fraction would strongly limit the angular range to which light
could be coupled. By exploiting strong scattering at the inter-
face, incident light kin is coupled to all outgoing angles kout in
the high index material. (B) Schematic of a HIRES-lens that
uses light scattering to achieve a high optical resolution. This
HIRES-lens consists of a slab of gallium phosphide (GaP) on
top of a strongly scattering porous layer. By controlling the
incident wavefront, a small focus is made in the object plane of
the HIRES-lens. (C) Overview of the setup. A λ0 = 561 nm
laser beam is expanded and illuminates a phase only spatial
light modulator. The modulated reflected beam is first im-
aged onto a two-axis steering mirror and then onto the porous
surface of the GaP HIRES-lens. A variable aperture controls
the extent of the illuminated area and a light stop places the
setup in a dark field configuration by blocking the center of
the light beam. We image the object plane onto a CCD cam-
era using an oil immersion microscope objective.

tering (HIRES).

A HIRES-lens consists of a homogenous slab of high-
index material on top of a strongly disordered scatter-
ing layer. The disordered layer breaks the translational
invariance of the interface, which enables incident light
to be coupled to all propagating angles inside the high-
refractive-index material as is shown in Fig. 1A. Yet mul-
tiple scattering also scrambles the wavefront creating a
speckle-like pattern on the object plane that itself can-
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Figure 2: Experimental imaging demonstration with a GaP
HIRES-lens. (A) A reference image taken with conventional
oil immersion microscope (NA = 1.49). The image shows a
blurred collection of gold nanoparticles. The scale bar rep-
resents 300 nm. (B) A high resolution image acquired with
our GaP HIRES-lens. The image was obtained by scanning
a small focus over the objects while monitoring the amount
of scattered light and deconvoluted with Eq. 1[24]. (C) A
vertical cross section through the center of the left sphere in
A and B shows the increase in resolution. The dashed lines
are Gaussian fits to the data points.

lens (Fig. 2A). Because the size of the gold nanopar-
ticles is much smaller than the resolution limit of this
conventional oil immersion microscope the image of the
nanoparticles is blurred. Next we used our HIRES-lens to
construct a high-resolution image. By manipulating the
wavefront a focus was generated on the leftmost nanopar-
ticle. We raster scanned the focus across the object plane
while we constantly monitored the amount of scattered
light. In Fig. 2B the result of the scan is shown[24].
A cross section through the center of the left sphere
(Fig. 2C) clearly shows the improvement in resolution
we obtained with our HIRES-lens, confirming our expec-
tations that the resolution of this image is far better than
that of the conventional high-quality detection optics.
For a more quantitative study of the obtained resolu-

tion, we study the shape of the focus in the HIRES-lens.
The radial intensity distribution of the focus is directly
calculated from a plane wave decomposition of the con-
tributing waves,

I(r) = I0

[

k2max

J1(kmaxr)

kmaxr
− k2min

J1(kminr)

kminr

]2

(1)

where J1 is a Bessel function of the first kind. The
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Figure 3: Optical resolution of a GaP HIRES-lens for differ-
ent radii, Rmax, of the illumination area. Red circles: mea-
sured resolutions of the HIRES-lens. Solid blue line: expected
theoretical resolution deduced from Eq. 1. Green squares:
measured resolution of the oil immersion microscope. Dashed
green line: mean measured resolution. Black arrow: expected
resolution for an infinitely large illumination area. By increas-
ing the illumination area the effective numerical aperture of
the lens increases thereby improving the resolution.

minimum and maximum coupled transversal k-vectors,
kmin and kmax, are directly related to the inner and
outer radius, Rmin and Rmax, of the illuminated area:

kmax = nk0
(

1 + L2/R2
max

)

−

1

2 (and similar for kmin). To
confirm this dependence, we imaged the objects for dif-
ferent values of the illumination radius Rmax. For each
measurement the resolution is determined by modeling
the resulting image of a single 50 nm gold nanoparticle
with Eq. 1. Since it is hard to quantify the resolution
from the width of a non-Gaussian focal shape we use
Sparrow’s criterion which defines the resolution as the
minimal distance at which two separate objects are still
discernible, see e.g. [26]. In Fig. 3 the measured resolu-
tion versus Rmax is shown. As a reference we also plotted
the measured resolution of the high-quality oil immer-
sion microscope. We see that the resolution improves as
we increase the illuminated area. The measured resolu-
tions are in excellent correspondence with the expected
resolution obtained from the calculated intensity profile.
The resolution of the HIRES-lens is much better than
the high-quality conventional oil immersion microscope.
The highest resolution we measured is 97± 2 nm, which
demonstrates imaging in the nanometer regime with vis-
ible wavelengths.

A GaP HIRES-lens has the potential to reach even
better optical resolutions up to 72 nm. It is then possi-
ble to resolve objects placed in each others near field at
distances of λ0/2π. To achieve these resolutions a wider
area of the scattering porous layer has to be illuminated
and as a result light has to be scattered at increasingly
higher angles from the porous layer. Here advances could
benefit from investigations in the field of thin film solar

Putten et al. Scattering Lens Resolves sub-100 nm Structures with Visible Light. arXiv (2011) vol. physics.optics
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Figure 2: Experimental imaging demonstration with a GaP
HIRES-lens. (A) A reference image taken with conventional
oil immersion microscope (NA = 1.49). The image shows a
blurred collection of gold nanoparticles. The scale bar rep-
resents 300 nm. (B) A high resolution image acquired with
our GaP HIRES-lens. The image was obtained by scanning
a small focus over the objects while monitoring the amount
of scattered light and deconvoluted with Eq. 1[24]. (C) A
vertical cross section through the center of the left sphere in
A and B shows the increase in resolution. The dashed lines
are Gaussian fits to the data points.

lens (Fig. 2A). Because the size of the gold nanopar-
ticles is much smaller than the resolution limit of this
conventional oil immersion microscope the image of the
nanoparticles is blurred. Next we used our HIRES-lens to
construct a high-resolution image. By manipulating the
wavefront a focus was generated on the leftmost nanopar-
ticle. We raster scanned the focus across the object plane
while we constantly monitored the amount of scattered
light. In Fig. 2B the result of the scan is shown[24].
A cross section through the center of the left sphere
(Fig. 2C) clearly shows the improvement in resolution
we obtained with our HIRES-lens, confirming our expec-
tations that the resolution of this image is far better than
that of the conventional high-quality detection optics.
For a more quantitative study of the obtained resolu-

tion, we study the shape of the focus in the HIRES-lens.
The radial intensity distribution of the focus is directly
calculated from a plane wave decomposition of the con-
tributing waves,

I(r) = I0
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ent radii, Rmax, of the illumination area. Red circles: mea-
sured resolutions of the HIRES-lens. Solid blue line: expected
theoretical resolution deduced from Eq. 1. Green squares:
measured resolution of the oil immersion microscope. Dashed
green line: mean measured resolution. Black arrow: expected
resolution for an infinitely large illumination area. By increas-
ing the illumination area the effective numerical aperture of
the lens increases thereby improving the resolution.

minimum and maximum coupled transversal k-vectors,
kmin and kmax, are directly related to the inner and
outer radius, Rmin and Rmax, of the illuminated area:

kmax = nk0
(

1 + L2/R2
max

)

−

1

2 (and similar for kmin). To
confirm this dependence, we imaged the objects for dif-
ferent values of the illumination radius Rmax. For each
measurement the resolution is determined by modeling
the resulting image of a single 50 nm gold nanoparticle
with Eq. 1. Since it is hard to quantify the resolution
from the width of a non-Gaussian focal shape we use
Sparrow’s criterion which defines the resolution as the
minimal distance at which two separate objects are still
discernible, see e.g. [26]. In Fig. 3 the measured resolu-
tion versus Rmax is shown. As a reference we also plotted
the measured resolution of the high-quality oil immer-
sion microscope. We see that the resolution improves as
we increase the illuminated area. The measured resolu-
tions are in excellent correspondence with the expected
resolution obtained from the calculated intensity profile.
The resolution of the HIRES-lens is much better than
the high-quality conventional oil immersion microscope.
The highest resolution we measured is 97± 2 nm, which
demonstrates imaging in the nanometer regime with vis-
ible wavelengths.

A GaP HIRES-lens has the potential to reach even
better optical resolutions up to 72 nm. It is then possi-
ble to resolve objects placed in each others near field at
distances of λ0/2π. To achieve these resolutions a wider
area of the scattering porous layer has to be illuminated
and as a result light has to be scattered at increasingly
higher angles from the porous layer. Here advances could
benefit from investigations in the field of thin film solar
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Super-resolution  /  fast acquisition

fast acquisition (10x faster)
standard processing

fast acquisition
super-resolution processing 

HiRes acquisition
standard processing 

13+

Orbitrap Ubiquitin spectrum
(col. J. Chamot-Rooke Institut Pasteur)
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other example

• Standard FT  vs  Sur-resolution processing

Fast Spectrum of Apolipoproteine A1
FT-ICR data

(30 kD   z=24+   m/z 1271)
Fast Spectrum of Angiotensin

FT-ICR data
( m/z 1727)

(col. C. Rolando Univ Lille)
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• principle of 2D FTICR proposed in 1987-88
nearly as old as 2D NMR

FTICR-2D

P Pfändler and G Bodenhausen and J Rapin and R 
Houriet and T Gäumann

Chem Phys Let (1987) vol. 138 (2) 195-200

P Pfaendler, G Bodenhausen, J Rapin, M Walser, T Gaümann
J Am Chem Soc (1988) vol. 110 (17) 5625-5628

Broad-Band Two- Dimensional FT-ICR 
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Figure 3. Broad-band 2D FT-ICR spectra S ( f I , w 2 )  of methane CH,, 
shown in absolute value mode prior to Fourier transformation with re- 
spect to f I .  The reaction interval i, was 500 ms. The evolution time t l  
was incremented in 120 steps of 1 ps, with 1K data points recorded in 
f 2 .  The light primary ion CH3+ features a slow f ,  modulation, because 
its high cyclotron frequency is near to the initial rf frequency of the 
chirped pulses. 

of the rf source in the t ,  period. In our experiments, this rf 
frequency corresponds to the initial (highest) frequency of the 
chirp. The remaining constant terms in eq 5 do not influence the 
frequencies in the spectrum but merely affect the phases of the 
signals. These phase terms are not relevant in our broad-band 
2D experiments since we use absolute value representations6 

If the relative phase of eq 5 is an odd multiple of x ,  the ions 
will spiral inward during the 7, interval of the second rf pulse and 
will be robbed of most of their kinetic energy, just as in the 
monochromatic 2D experiment. The population of the resulting 
"cold" A+ ions is therefore modulated by [anA - olrf]tl. If both 
pulses PI  and P2 are relatively weak, so that the radius of the 
trajectory in t l  is about 20-50% of the optimum radius, the 
modulation is again found to be approximately cosinusoidal. The 
use of relatively weak rf pulses makes it possible to avoid the 
appearance of signals a t  harmonic frequencies in the w 1  domain 
of the 2D spectrum.' Note that in practice the rf field experienced 
by the ions in the cell is a function of their cyclotron radius.14 
After ion-molecule collisions, fragmentation, or photodissociation 
according to the scheme A+ + C - B+ + D, the resulting product 
ions B+ are re-excited in the usual manner by the third pulse in 
the sequence of eq 1. Normally, the third pulse is also chirped, 
and the signal is observed in the t 2  period without heterodyne 
detection, so that the frequencies in the w2 domain correspond 
to the true (laboratory frame) cyclotron frequencies rather than 
to the offset with respect to an rf carrier frequency. The signal 
of an ion B+, observed at w2 = wB, is modulated by the offset [wA 
- wlrf]  of its precursor A+, and cross-peaks appear if a reaction 
has taken place. 

To illustrate the potential of 2D FT-ICR, we have chosen two 
very simple cases, both involving methane. This choice was 
suggested by the fact that, because of the inverse proportionality 
of cyclotron frequencies and mass-to-charge ratios, the demands 
on the bandwidth are greatest if one considers a mixture of light 
ions such as CH3+ and ions that have more than twice the mass 
such as C2D,+. 

Figure 3 shows a mixed time/frequency domain representation 
of broad-band 2D FT-ICR spectra of methane. Ionization pro- 
duces only the two primary ions CH3+ and CH4'+. One also 
observes secondary ions CHS+, but these signals are modulated 
as a function of t l  at the same frequency as the CHI'+ signals, 
providing evidence that the secondary CH5+ ions are daughters 
of the primary ions CHI'+. 

This relationship may be appreciated much more readily after 
Fourier transformation with respect to t l .  The two-dimensional 

(14)  Huang, S .  K.; Rempel, D. L.: Gross, M .  L. Int .  J .  Mass Spectrom. 
Ion Processes 1986, 72, 15. 
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Figure 4. Two-dimensional broad-band FT-ICR spectrum S ( w l , w 2 )  of 
methane CHI, derived from the data shown in part in Figure 3. The 
matrix of 120 X 1K was extended to 256 X 2K by zero-filling prior to 
Fourier transformation. The spectrum is shown in absolute value mode. 
Higher contours have been filled in to enhance contrast. The dashed line 
of primary ions features resonances due to CH3+ and CH,", analogous 
to diagonal peaks in 2D NMR. The dotted lines indicate how the 
modulation of the primary ion CH4'+ is transferred to the daughter ions 
CH3+ and CH5+, as evidenced by two cross-peaks emphasized by arrows. 
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both their cyclotron radius (i.e., to the product of their
cyclotron frequency and t1) and their abundance. The rela-
tive ICR signal magnitude of the product ions is proportion-
al to their abundance, i.e., to the radius of their precursors,
which is determined by the product of the cyclotron fre-
quency of these precursors and t1.

CH5
+ is a product ion which is created by ion–molecule

reactions between CH4
•+ and neutral methane [40]. The fre-

quency of the relative ICR signal magnitude of CH5
+ in the t1

interval is therefore equal to the cyclotron frequency of its
CH4

•+ precursor. This is evident in Fig. 2, where the CH5
+

peak is maximum when the CH4
•+ peak is also maximum.

CH3
+ is both a precursor that is present at the start of the pulse

sequence and a product of collisions involving CH4
•+. Its ICR

signal therefore has two frequencies in the t1 interval: its own
cyclotron frequency and the cyclotron frequency of CH4

•+.
By recording FT-ICR mass spectra using systematically

incremented durations t10n1×Δt1 (in which n1 is the num-
ber of increments, with n1

max giving the resolution in the
vertical dimension, and Δt1 the increment, which gives us
the sampling rate and the Nyquist frequency, i.e., the lowest
m/z ratio in the vertical dimension), one can observe the
modulations of the relative ICR signal magnitude of all ions
in a sample and correlate them with the relative ICR signal
magnitudes of their fragments. It is sufficient to calculate the
Fourier transform of each time transient recorded as a

function of the detection interval t2 and to calculate another
Fourier transform as a function of the evolution interval t1.
In the resulting 2D cyclotron frequency spectrum, all frag-
ment ion peaks appear along the ω2 axis (usually plotted
horizontally) and their precursors appear along the ω1 axis
(which is by convention plotted vertically).

This pulse sequence has the potential to offer an efficient
alternative to FT-ICR MS/MS. Indeed, whereas in MS/MS
the ions of interest must first be identified by the user before
setting the isolation and fragmentation parameters, in 2D
FT-ICR MS all ions in the sample can be fragmented at the
same time. Furthermore, ion isolation can lead to ion losses
and therefore to losses in sensitivity. In a 2D FT-ICR MS
experiment, the ions need not be isolated in the ICR cell.
Finally, because of the properties of the Fourier transform,
all time transients that are acquired contribute to the signal-
to-noise ratio of all ion species in the sample, both of
precursor ions and of their fragments, whereas in MS/MS
the time transients that are accumulated for each spectrum
only serve to improve the signal-to-noise ratio of one se-
lected parent ion and its fragments [41].

Pfändler et al. recognized that CID and ion–molecule
reactions are not the only fragmentation modes that can be
used for 2D FT-ICR MS: any process leading to new ions
whose efficiency depends on the cyclotron radius of the
precursor ions can be used. In a subsequent study, they

Fig. 2 Pulse sequence of 2D
Fourier transform ICR (FT-
ICR) mass spectrometry (MS)
proposed by Pfändler et al. (top)
and evolution of the product ion
peaks induced by ionizing
methane by electron ionization
with the evolution interval t1
between the first two radiofre-
quency pulses (bottom). ECD
electron capture dissociation,
IRMPD infrared multiphoton
dissociation. (Adapted with
permission from Pfaendler et al.
[37])
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of new double-quadrupole time-of-flight instruments during
the elution time of a chromatographically windowed MS
selection covering the full useful mass range [52].

Recent developments in 2D FT-ICR MS

Since 2000, considerable advances have been made in main-
stream computer capacity: from 2003 onwards, personal
computers have been equipped with 64-bit processors, file
systems, and improved operating systems. This increased
speed, accuracy, the size of data files (which increased from
1 GB to 4 PB), and the size of accessible memory. The
storage capacities of hard drive disks improved dramatically
(the terabyte limit was broken in 2007), which facilitates the
recording of large data sets. The electronics of FT-ICR MS
acquisition systems have been fully digitized, thereby mak-
ing excitation pulses very stable and allowing easy changes
of the experimental protocol.

In this context, revisiting 2D FT-ICR MS in order to turn
it into a fully fledged, high-resolution analytical technique
became possible. In addition to the advances in data acqui-
sition and processing, gas-free fragmentation techniques
such as IRMPD and ECD have become routinely available
on commercial FT-ICR instruments [53]. Because no gas
needs to be injected into the ICR cell, the ions do not
undergo collisions with neutrals and ion packets remain
coherent. The use of ECD or IRMPD therefore improves
both the sensitivity and the resolution of MS/MS and 2D
FT-ICR MS.

In 2010, we implemented Pfändler’s experiment on a 9.4-
T ApexQE FT-ICR instrument from Bruker Daltonics (Bre-
men, Germany) with a positive nanoESI ion source and
IRMPD as a fragmentation method [54]. Because of the
improvements in FT-ICR technology, we were able to re-
cord time transients over an analytically useful mass range
(m/z 87.67-2,000) in the (horizontal) 5 2 domain. The incre-
ment of the evolution time was Δt100.3 μs, which corre-
sponds to a maximum measured frequency of 1.667 MHz
and an m/z 87.67-2,000 mass range in the (vertical) 5 1

domain.
Despite recent advances in computer technology, the size

of the data sets that we were able to record did not afford the
kind of resolution that FT-ICR MS users would like to see:
the data-processing program that we used, NMR Processing
Kernel, had been developed for NMR spectroscopy [55], in
which data sets are typically much smaller than in FT-ICR
MS, and had been written in 32-bit code. To acquire enough
time transients as a function of t1 to resolve the ions in the
“vertical” 5 1 dimension, we had to sacrifice high resolution
in the “horizontal” 5 2 dimension. We recorded 2D mass
spectra with 2,048 time transients comprising 32,768 data
points each, leading to a file size of 256 MB.

The samples we used in this study were well-known
peptides, angiotensin I, fragment 1–8 of bradykinin, and
substance P. In Fig. 3 we show the 2D FT-ICR MS spectrum
of fragment 1–8 of bradykinin with a number of in-source
fragments, which are precursor ions in the ICR cell. The 2D
mass spectrum features several characteristic lines: the au-
tocorrelation line (circled), which shows the modulation of
the relative ICR signal magnitude of the precursor ions with
their own cyclotron frequencies, the “horizontal” spectra of
fragment ions (horizontal fragment ion spectrum), and the
“vertical” spectra of precursor ions (vertical precursor ion
spectrum). A short glossary for 2D MS can be found at the
end of this article.

We observed fragments similar to those obtained in
IRMPD MS/MS spectra, albeit with low intensities because
they were excited three times less than their precursor ions.
We also observed harmonics of each peak in the vertical
dimension because the cyclotron radii of the ions are not
modulated sinusoidally, as predicted by Guan and Jones
[56]. Horizontally, the resolution of the peaks increases with
cyclotron frequency and decreases with m/z ratio, as
expected from Fourier analysis. The resolution in the verti-
cal domain showed the same behavior, i.e., it is inversely
proportional to m and did not depend on the cyclotron
frequency in the horizontal domain. Finally, we observed
considerable scintillation noise, which led to vertical stripes
in the 2D spectrum at the frequencies of the most intense
peaks.

Scintillation noise proved to be a significant problem in
2D FT-ICR MS spectra because spurious peaks can lead to
errors in determining fragmentation paths. To remove scin-
tillation noise from 2D mass spectra, we applied an algo-
rithm based on singular value decomposition that was

Fig. 3 Two-dimensional FT-ICR MS spectrum of bradykinin using
IRMPD fragmentation and Cadzow denoising (30 lines). Inserts
enlargements of the b6→b6-H2O and the b6→b2 peaks. The autocor-
relation line is circled. (Data published in van Agthoven et al. [59]
reprocessed)
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Autocorrelation
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Two-dimensional FT-ICR MS spectrum of 
bradykinin using IRMPD fragmentation 
and Cadzow denoising (30 lines). Inserts 
enlargements of the b6 →b6-H2O and the 
b6 →b2 peaks.
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van Agthoven, M. A., Delsuc, M.-A., Bodenhausen, G. & Rolando, C.
Anal Bioanal Chem 405, 51–61 (2013).
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FT-ICR simulator
Chirp pulse

ion trajectory

Swept pulse
Frequency : 200.000-50.000 kHz
sweep width : 150.000 kHz    sweep steps : 1000
duration : 1.000 msec 
Epp : 1666.67 V/m
approx excitation radius : 11.82 mm

resonant frequency 144151.41 Hz
final radius : 7.56 mm
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Improvements over time

effective rank of the Toeplitz data matrix [Xq] after it is de‐
noised. The number of iterations is the number of iterations
used to reconstruct [Xq]. This parameter has a large incidence on
the time used by the calculation. Finally, the order of the
calculation q is a number between 2× p and half the size of the
horizontal dimension (i.e. 16384 in this study) and it determines
the quality of the calculation.
The spectra were plotted using NMRnotebook 2.60, a

software purchased from NMRTEC (Illkirch‐Graffenstaden,
France) and developed to process, visualize and analyze 1D
and 2D NMR spectra.

RESULTS AND DISCUSSION

Figure 1 shows the comparison between the 2D mass
spectrum of bradykinin without Cadzow procedure and
with Cadzow procedure. In both spectra, the horizontal
dimension represents the cyclotron frequencies of the ions
(32768 is equivalent to the Nyquist frequency of the
spectrum, i.e. 1667 kHz, which, for an instrument with a
9.4 T magnetic field, corresponds to m/z 86.7). The vertical
dimension corresponds to the correlation frequencies, i.e. the
frequencies with which the ion signal amplitude varies

Figure 1. 2D IRMPD mass spectrum of bradykinin (1pmol/μL in MeOH/water with 0.1% formic acid) using IRMPD (50% for
0.1 s) (a) without application of the Cadzow algorithm and (b) with application of the Cadzow algorithm using 30 lines, 10
iterations and an order of 500. Cyclotron frequencies are represented horizontally (fNyquist = 1667kHz=32768 a.u., corresponding
to a m/z 86–1000 mass range) and correlation frequencies are represented vertically (fNyquist = 1000kHz=2048 a.u., corresponding
to am/z 144–1000mass range). Although the size of the data set is 32768× 2048 points, we chose to represent 10000× 300 points for
better visibility, corresponding to m/z 708–203 horizontally and m/z 741–423 vertically. *Harmonics of the signal according to t1.

M. A. van Agthoven et al.

wileyonlinelibrary.com/journal/rcm Copyright © 2011 John Wiley & Sons, Ltd. Rapid Commun. Mass Spectrom. 2011, 25, 1609–1616
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2011 : bradykinin - IRMPD

2012 : BPTI - ECD

2014 : triglycerid  - high resolution

    van Agthoven, M. A. V., Delsuc, M.-A. & Rolando, 
C.. Int J Mass Spect. 306, 196–203 (2011).

Because the resolution of the 2D mass spectrum is insufficient
to measure the mass of an electron, these reactions are along
the following lines:

= −
y

n p
n

x
(3)

In the case shown in Figures 2 and 3, n = 2 and p = 1, and
the equation of the line is y = x/2. Because MH+ is not a
product of eq 2 but its monoisotopic ion is a fragment of the
monoisotopic ion of MH2

2+, its peak is on the horizontal line
corresponding to the fragmentation of MH2

2+, but not on the y
= x/2 line.
Figure 4 shows the 2D mass spectrum of a mixture of

synthetic glycopeptides. in the MS spectrum, we can see, for

each peptide in the sample, ions MH+, MH2
2+ and the singly

charged peptide after losing the sugar, which is an in-source
fragment (see Supporting Information Figure 5). The peaks
corresponding to all these ions are found on the self-correlation
line of the 2D mass spectrum (circled). On the horizontal lines
crossing the self-correlation peaks of the MH2

2+ ion of each
peptide, we can see the peaks corresponding to the c/z
fragmentations of these ions. We do not see peaks
corresponding to sugar loss, which is consistent with the fact
that ECD is specific to peptide bond fragmentations and does
not affect post-translational modifications.16 The fact that we
do not see fragmentations that are not caused by ECD also
means that, despite the fact that precursor ions can be excited
to high radii over relatively long time intervals, there are no ion-
gas collisions leading to fragmentations inside the ICR cell.
Figure 4 also shows two other characteristic lines of 2D mass
spectra. The first one is the y = x/2 electron capture line. The
other characteristic line is the loss of a neutral, which is parallel
to the self-correlation line but shifted to the left by the mass of
the neutral. In Figure 4, the MH2

•+ loses CO2, so the line
corresponding to this is y = x/2 + 43.990.

Figure 5 shows a 2D ECD mass spectrum of bovine
pancreatic insulin that features the fragmentation patterns of

MH4
4+ (m/z 1146.928), MH5

5+ (m/z 955.941), and MH6
6+

(m/z 819.522). The self-correlation line is circled. In the
inserts, we zoomed in on the region between m/z 1600 and
1800 horizontally and between m/z 1100 and 1180 vertically
(fragment peaks of m/z 1147, corresponding to MH5

5+). In the
Supporting Information Figures 9 and 10 we show the steps of
data processing. In Supporting Information Figures 9, we show
the 2D mass spectrum after a simple 2D Fourier transform and
a conversion from frequencies into mass-to-charge ratios. Not
only do we notice strong vertical traces of scintillation noise on
the 2D mass spectrum, but we also observe many secondary
self-correlation lines. These secondary lines are caused partially
by the fact that the signal along t1 is not a perfect sinusoid and
shows harmonics after Fourier transformation.17 The harmon-
ics are also offset by the frequency of the highest m/z ratio in
the spectrum or one of its multiples, which causes the nonlinear
aspect of the secondary lines in the 2D mass spectrum. To limit
the effect of the offset, we applied a time-dependent
demodulation of the data along t1 before the vertical Fourier
transform. The result is shown in S.I. Figure 10. We notice that
a number of secondary lines have disappeared from the
spectrum, thereby making it more easily readable. Furthermore,
we can also notice a slight increase in signal-to-noise ratio. The
2D mass spectrum presented in Figure 5 has been submitted to
another step of data processing between the vertical phase
correction and Fourier transform, because it has been denoised
using the Cadzow algorithm.5b We can notice that the vertical
scintillation noise stripes have significantly decreased, making
data interpretation much easier.
In Figure 5 we observe a number of peaks corresponding to

known fragmentations, most notably the addition of one or two
electrons to the peptide, leading to the radical ions that
fragment into c and z ions.18 We compared the fragment peaks

Figure 4. 2D mass spectrum of the mixture of custom synthetic
glycopeptides (M1: YSPTS(β-O-GlcNAc)PSK-NH2,M2: SVES(β-O-
GlcNAc)GSADAK-NH2, M3: SVET(β-O-GlcNAc)GSADAK-NH2 at
1 pmol/μL in MeOH/water, 50:50, with 0.1% formic acid) using ECD
(0.015 s at 1.7 A cathode heater current) as a fragmentation mode.
The number of data points is 2048 × 65536. The spectrum has been
denoised using the Cadzow algorithm (30 lines, 5 iterations, order of
1000). The self-correlation line is circled.

Figure 5. 2D mass spectrum of bovine pancreatic insulin (3 pmol/μL
in MeOH/water, 50:50, with 0.1% formic acid) using ECD (0.01 s at
1.5 A cathode heater current) as a fragmentation mode and with a m/z
300−2000 horizontal mass range and a m/z 800−1500 vertical mass
range. The number of data points is 2048 × 65536. The spectrum has
been denoised using the Cadzow algorithm (30 lines, 5 iterations,
order of 1000). The self-correlation line is circled. The insert shows a
zoom in the region between m/z 1600 and 1800 horizontally and
between m/z 1100 and 1180 vertically (fragment peaks of m/z 1147,
corresponding to MH5

5+).

Analytical Chemistry Article
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Tri Acyl Glycerol (TAG)
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Le bruit
•Classique

• additif - blanc - gaussien - centré

• hétéroscédasticité
bruit multiplicatif
bruit de scintillation
bruit d’instrument

• traitement explicite dans les modèles mathématiques

•ce que je ne connais pas
ce qui est en dehors de mon modèle

• erreur
• biais
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Débruitage par la Procédure de Cadzow

rQR algorithm,an alternative to Cadzow denoising algorithm

Lionel Chiron and Marc-André Delsuc
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC),
UMR 7104, 1 rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France

(Dated: February 1, 2012)

We present here a significant alternative to Cadzow denoising algorithm where the central trun-
cated SVD operation is replaced by a matrix approximation. It is shown that this new algorithm
allows an impressive improvement both in speed and in denoising quality while paradoxically the
method is not deterministic. rQR algorithm appears to be more flexible than Cadzow for which the
choice of the rank for the same accuracy is much more constrained.

PACS numbers:

INTRODUCTION

A large number of denoising methods during the last
decennies were proposed. In the state-of-the-art can be
cited methods among which wavelet transforms, Maxi-
mum entropy methods, Bayesian and maximum likeli-
hood techniques, genetic algorithms , linear prediction
etc... In the framework of linear prediction, Autoregres-
sive models (AR) methods can be highlighted for their
rosbustness and simplicity. They consist in expressing
the ouput of the system from the previous outputs. They
are used in many areas : speech recognigtion, seismology,
spectral analysis, signal restoration.

[3]
The paper is organized as follows :

1. Linear prediction

2. Cadzow algorithm

3. New algorithm rQR

4. Results

5. Discussion

Model-based Linear prediction

For using linear prediction the signal as to be sampled
at regular times in time-series. The Autoregressive model
(or process) relies on that time-series can be decomposed
on a finite number of damped sinusoids. This assumption
allows if the model is correct to achieve nice spectral
resolutions. The decomposition of a time series x on P
poles is written as for the lth element:

xl =
P⌥

p=1

�p(zp)
l (1)

where

zp = e�p+j⇥p (2)

zp parameters are its damping factor⇥p and ⇤p its fre-
quency. Seen in the complex plane, zp are spread inside
the unit circle
The poles zp can be expressed as the roots of a polynom.

K(z) =
P�

p=1

(z � zp) (3)

When nulling the polynom on one of the poles, it leads
to the expression of the pole as a linear combination of its
powers which coe⇥cient bm are called the autoregressive
parameters.

(zp)
l = �

P⌥

m=1

bm(zp)
l�m (4)

from 1 and 4 rewrite the time-series as an autoregres-
sive process.

xl = �
P⌥

m=1

bmxl�m (5)

This property of the time-series of length L can be
expressed in the form of a Hankel matrix :

�

⇧⇧⇧⇧⇧⇧⇤

x1 x2 ... xP

x2 x3 ... xP+1

x3 x4 ... xP+2

x4 x5 ... .
. . ... .

xL�P xL�P+1 ... xL�1

⇥

⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇤

bP
bP�1

bP�2

.
b1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

xP+1

xP

xP�1

.
xL

⇥

⌃⌃⌃⌃⌅

This matrix H is composed of P linearly independant
columns vectors. In this case, the rank k of the matrix H
(the number of linearly independant vectors) is equal to
the number P of poles. The singular value decomposition
(SVD) of H gives P singular values. Generally we don’t
know how many damped sinusoid define completely the
signal represented by the time-series and the assumption

xn =
KX

k=1

brxn�k

2

is done that the time-series can be decomposed on said
N damped sinusoids.

xl =
N⌥

n=1

bnxl�n (6)

For a signal of length L = M+N+1 , the Hankel matrix
representation is :

�

⇧⇧⇧⇧⇧⇧⇤

x1 x2 ... xN

x2 x3 ... xN+1

x3 x4 ... xN+2

x4 x5 ... .
. . ... .

xL�N�1 xL�N ... xM+N

⇥

⌃⌃⌃⌃⌃⌃⌅

It is a matrix M ⇥N . N is said the order parameter.
If the signal relies on P poles, the singular value decom-
position will constitute of P non zero singular values and
N � P singular values equal to zero. In the more gen-
eral case where the signal contains noise, the last N � P
singular values are none zero ones.

When decomposed in SVD, H is written as the product
of three matrices U , �, V

H = U ⇥ �⇥ V ⇥ (7)

U and V are orthonormal matrices linked respectively
to the arrival space and departure space. � is a pseudo-
diagonal matrix containing the singular values ordered
from the highest to the lowest.

One practical representation for singular decomposi-
tion is the dyadic formulation :

H =
N⌥

i=1

�iuiv
T
i (8)

Where the �i s are the singular values, ui the column
vectors of the arrival basis, v⇥i the transposed column
vectors of the departure basis. It can be rewritten for
separating signal part from noise part :

H =
P⌥

i=1

�iuiv
T
i +

N�P⌥

i=1

�iuiv
T
i (9)

The signal is decomposed on two basis : the signal
basis and noise basis.

Based AR algorithms

Di⇥erent approaches using linear prediction
Burg,FDM etc.. Cadzow algorithm is very popular
since it is stable and simple to implement. It relies on
SVD decomposition.Heuristic algorithm.

Cadzow algorithm

It consists of alternating projections between low rank
matrix space and structured Hankel matrix space. The
SVD decomposes the Hankel matrix in the product of
three matrices. one orthogonal U a rectangle matrix �
containing the singular values on its diagonal and V an
orthogonal matrix. The singular values are the weight of
each frequency component present in our signal . They
are ordered from the biggest one to the smallest one.

Description of the algorithm

Algorithm steps :

1. form the Hankel matrix from time domain data

2. make the SVD

H = U ⇥ �⇥ V ⇥ (10)

3. truncate � to obtain the matrix of rank k H̃k

H̃k =
k⌥

i=1

�iuiv
T
i (11)

4. find the Hankel structure again by averaging on the
antidiagonals.

gives low rank approximation with the spectral norm :

⇤ H � H̃k ⇤� �k+1 (12)

Using SVD allows to control the degree of approxima-
tion.
With SVD the rank is directly the number of frequencies
in the signal.

Cadzow viewed as projection filtering

The SVD truncature can be viewed as a projection on
the subspace defined by the singular vectors ui associated
to the main singular values.

H̃ = UtU
⇥
t H (13)

where Ut is the matrix U with the last N � P column
vectors removed.
This idea can be extended and instead of projecting

on the singular basis, the projection can be done on al-
ternative basis that will liberate from the constraint of
guessing accurately enough the number of poles the sig-
nal contains. It is on what trelies our algorithm rQR.

H̃ = U ⇥ �̃⇥ V ⇤

Hb = x

•Equation de Prédiction Linéaire (LP)
• ⇔ somme de K sinusoïdes amorties

• expression matricielle du problème LP

• H est décomposée en valeurs singulières

• puis tronquée à K valeurs propres équivalent à kH̃k
o

= K
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Cadzow
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Vertical precursor ions spectra from the 2D IRMPD FT-ICR MS spectrum of bradykinin: b6 
(red), b6-H2O (blue), b5 (pink), a5 (green), b4 (black) (a) without Cadzow procedure, (b) 
with Cadzow algorithm for 70 lines and (c) for 30 lines [32]
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Improving the detection
• Sensitivity of the measure is governed by Signal/Noise ratio

⇒ increase signal
⇒ reduce noise

• Noise sources
• “standard”
‣ coming from the electronic on the apparatus
⇒	
  acquire more scan = takes time

• scintillation noise
‣ comes from the sample
⇒	
  no counter action during acquisition

‣ preponderant in 2D   (t1-noise in NMR)

• Impact
• better detection of weaker compounds
• better coverage in bottom-up proteomics
• better detection of PTM
• faster acquisition

S/N =
p
Nscan

S/N ⇠ invariant
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M x N
L = M + N + 1

M < N

Hankel matrix

Statistical treatment

Hankel matrix:   Same terms on antidiagonals

Signal time-series : 

Uniform sampling 

P frequencies



M-A Delsuc  Ecole FTMS avril 2014

• The idea is to decompose H
‣ using Singular Value Decompostion  SVD

‣ singular values

• we keep only the k largest singular values
‣ and reconstruct a denoised signal from the rank-reduced H matrix

‣ projection of H on a subspace

Cadzow procedure

�1 > �2 > �3 > ...

⌃ =

2

6666664

�1 0 ... 0
0 �2 ... 0
0 0 ... 0
0 0 ... �N

. . .
0 0 ... 0

3

7777775

Cadzow, J.A. (1988) IEEE Trans. Acous. Speech Signal Proc., 36, 49-62.

x̃p = hH̃ijii+j�1=p

‣ then averaging on H antidiagonals

H̃ = U⌃kV
⇤

H = U⌃V ⇤
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Effect of Cadzow cleaningECD, Substance P , after Cadzow denoising, frequency scale

Page � 28

ECD, Substance P, raw data, frequency scale

Page � 27

ECD - Substance P
1 hour acquisition

Agthoven, M. A. V., Coutouly, M.-A., Rolando, C. & Delsuc, M.-A. 
Rapid Commun Mass Spectrom 25, 1609–1616 (2011).

dataset : 512Mb
1 week processing

on departemental cluster !

O(N3)

Classical method : Cadzow
based on SVD analysis

does not scale well

Sensitivity == noise reduction 
Resolution == Size == processing time
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combine several new mathematical ideas
• use new developments linking between algebra and statistics

‣ Johnson Linderstrauss Lemma (1984)
‣ Compress Sensing approaches (Candès 2006, Donoho-Tanner 2007) 

• Apply matrix approximation rather than complete matrices
‣ Tygert, Martinsson ( 2007 )

•⇒ Estimate values rather than determining them
• SVD can then be replaced by QR decomposition (faster)
• precision and efficiency grows as the square root of the size

hence efficient for Big Data

• uncoiled random QR denoising  :  urQRd
• noise reduction from random sampling !

Approximate by random sampling
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Example of urQRd on synthetic data

Fig. 1. Comparison of the the SNR gain afforded by the de-noising methods as a function
of the rank. The computations are performed here on a synthetic complex 2000 points
data-set containing 20 frequencies. a) Fourier Transform (FT) of the initial synthetic data-
set composed of 20 lines of varying intensity. b) FT of the test data-set, with an added
Gaussian white noise. SNR of the time-domain data-set is -0.14 dB. c-e-g) FT of the SVD
processed of the synthetic data-set with with varyingK. d-f-h) FT of the rQRd processed of
the synthetic data-set with with varying K. c-d) rQRd and SVD processed of the synthetic
data-set with K = 10 SNR gains : SVD 8.23 dB rQRd 2.91 dB, e-f) idem with K = 20
SVD 12.00 dB rQRd 5.13 dB. g-h) idem with K = 80 SVD 6.91 dB rQRd 9.95 dB.

Fig. 2. Comparison of the the SNR gain afforded by the de-noising methods as a function
of the rank. The computations are performed here on a synthetic complex 1000 points
data-set containing 50 components on increasing intensity in a pattern similar to figure 1.
rQRdn indicates the result obtained when iterating the rQRd method n times.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

K=10

K=20

K=80

SVD urQRd

clean noisy

K : estimate of number of signals
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much Faster - much Lighter
processing times
SVD in       MN2

urQRd in   KLlog(L)
K ≪ M < N < L

44.000 points
SVD : 42 min
urQRd : 4.1 sec

1.024.000 points
urQRd : 132 sec

4.096.000 points
urQRd : 10 min

better noise rejection
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Applied to 1D FT-ICR data-set
Tryptic digest of CytC

512k transient
1 second acquisition

Fig. 3. Comparison of the rQRd (bullets) and urQRd (diamonds) de-noising approaches,
as well as the SVD approach (crosses), performed here on a synthetic complex data-set
containing 9 frequencies, and processed with K = 100. Top: processing speed, of the
one methods. Asymptotic behavior fitted on the graph are SVD � n2.83 rQRd � n2.11

and urQRd � n1.71. Cross-over between rQRd and urQRd is around 40 000 points.
Bottom: de-noising efficiency, expressed as the SNR gain afforded by the de-noising
method.

Fig. 4. Processing of a single-scan FT-ICR mass spectrum of a trypsin digest of Cytochrome C. Bottom original spectrum, SNR measured on the m/z 728.8388
peak is 24.0 dB. Top same spectrum after urQRd processing (K = 1000), SNR measured on the m/z 728.8388 peak is 40.7 dB. inset) the m/z 728.8388 peak
corresponds to the TGQAPGFSTDANK2+ ion, m/z 678.3821 to YIPGTK+ and m/z 717.9012 to GEREDLIAYLKK2+. The peak labeled with a star at m/z=686.390,
lacking isotopic structure, is likely to be an experimental artifact. The processed interferogram is 512k points, processed here with K = 1000.

Footline Author PNAS Issue Date Volume Issue Number 7
SVD   ( ~45 days    512Go memory) 
urQRd       25 min       4Go memory

http://urqrd.igbmc.fr

Chiron, L., van Agthoven, M. A., Kieffer, B., Rolando, C. & Delsuc, M.-A. 
Proc Natl Acad Sci USA 111, 1385–1390 (2014).

http://urqrd.igbmc.fr
http://urqrd.igbmc.fr
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Figure S4: rQRd e�ciency for various noise types on a synthetic datasets.
Topline the noise-free temporal signal and its Fourier transform.
Left column second and third row additive noise forth and fifth row sampling noise
Right column second and third row scintillation noise forth and fifth row missing point
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Efficient on many kinds of noise
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Figure S4: rQRd e�ciency for various noise types on a synthetic datasets.
Topline the noise-free temporal signal and its Fourier transform.
Left column second and third row additive noise forth and fifth row sampling noise
Right column second and third row scintillation noise forth and fifth row missing point

6

noise free data

additive

jitter

scintillation

missing points
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effect of urQRd denoising

Fig. 5. 2D IRMPD FT-ICR MS spectrum of triacylglycerols extracted from human plasma showing strong scintillation noise. The data-set is 2k � 128k points. inset)
zoom on the pattern centered at m/z(F1) 845 and m/z(F2) 584 (highlighted in pink). The two groups of peaks give the isotopic patterns of lithiated TAG(16 :0/16
:0/18 :1) at m/z 839.7674 and lithiated TAG(16 :0/18:1/18 :1) at m/z 865.7831 respectively losing a palmitic acid (MW 256.2396) and an oleic acid (MW 282.2553) in
order to yield a lithiated diacylglycerol DAG(16:0/18:1) at m/z 583.5278(33). SNR was measured on the zoomed zone to 22.2 dB and 42.8 dB for the standard and
de-noised datasets respectively.

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

uncleaned data
urQRd cleaned
2Gb datasets
25 min processing on desktop
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Very efficient

Reduction of t1-noise on a 2D NOESY spectrum  ~2minutes
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