Highly complex analysis from petroleum to polymers

Carlos Afonso

- Complementary expertise
 - Industrial applications
 - MS
 - ICP-MS

C2MC joint lab

Complex mixtures

Analysis of heavy petroleum product

• $C_3 vs SH_4$

– 3.4 mDa

Petroleum complexity

Petroleum refining processes

Why molecular characterization

- Petroluem valued based on macroscopic descriptors
 - American petroleum institute (API) Gravity
 - Sulfur content
 - Total acidity number (TAN)
 - Metal content (V, Ni)...
- Understand macroscopic properties at the molecular level
 - Corrosion
 - Fouling
 - Emulsion...
- Petroleums with similar macroscopic descriptors may have different properties

	Country of Origin	Crude Oil Class	Properties			
Crude Oil			Gravity °API	Sulfur (wt.%)	Price USD (2018/03)	
Brent	UK	Light Sweet	40.0	0.5	69.0	
West Texas Intermediate	USA	Light Owool	39.8	0.3	64.8	
Arabian Extra Lt. Export	Saudi Arabia	Light Sour	38.1	1.1	68.9	
Daqing	China	Medium Medium Sour	33.0	0.1	63.1	
Arabian Light Expor	Saudi Arabia	Medium Sour	34.0	1.9	64.0	
Kuwait Export Blend	Kuwait		30.9	2.5	62.1	
Oriente Export	Ecuador	Heavy Sour	25.0	1.4	60.3	
Maya Heavy Export	Mexico		21.3	3.4	57.0	

Thèse de Johann Le Maitre

Vacuum Gasoil ESI(-)

Meas. m/z	#	Ion Formula	m/z	err [ppm]
377.191059	1	C28H25O	377.191089	0.1
377.194431	1	C25H29OS	377.194460	0.1
377.248612	1	C26H33O2	377.248604	0
377.251936	1	C23H37O2S	377.251975	0.1
377.284998	1	C27H37O	377.284989	0
377.342524	1	C25H45O2	377.342504	-0.1

What is important for complex mixtures

- Properties
 - Resolving Power
 - Mass accuracy
 - Dynamic range
 - Number of ions
- High field FTICR
 - All properties increase
 - Linear
 - Quadratic

Molecular map

S. Gutierrez Sama, M. Farenc, C. Barrère-Mangote, R. Lobinski, C. Afonso, B. Bouyssiere, P. Giusti. Molecular Fingerprints and Speciation of Crude Oils and Heavy Fractions Revealed by Molecular and Elemental Mass Spectrometry: Keystone between Petroleomics, Metallopetroleomics, and Petrointeractomics. *Energy Fuels* **8 2018**.

Data treatment

- http://petroorg.com

PetroOrg

•

- Composer (Sierra Analytics)
 Composer
 - http://massspec.com/composer/

Ion source comparison

Electrospray ionization

APCI

• APPI

Atmospheric Pressure Photo Ionization

Atmospheric Pressure Chemical Ionization

Liquid phase ionization

Gaseous phase ionization Using a corona discharge Gaseous phase ionization Using a UV lamp hv = 10.6 eV

20

- 。 ESI
- APCI
- APPI
- Direct insertion probe APCI
- MALDI

APCI

Equipment

Exemple: Complex petroleum mixtures

- Basic vs Non Basic N

Ionization discrimination

ESI(-) NB nitrogen

Un peu de chimie structurale

Isolation *m/z* 490.449

Q

ICR

DBE 10 N1 fragment series

Asphaltenes

Reference asphaltene de in the framework of PetroPhase 2017 Le Havre.

Non-soluble in pentane or heptane but soluble in toluene

Island

Archipelago

Org. Biomol. Chem., 2015, 13, 6984-6991

Marianny Combariza

Asphaltene

N. Hourani, J. T. Andersson, I. Moller, M. Amad, M. Witt, S. M. Sarathy. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis. *Rapid commun. mass spectrom.* **2013**, *27*, 2432.

Y. Han, Y. Zhang, C. Xu, C. S. Hsu. Molecular characterization of sulfur-containing compounds in petroleum.

V. V. Lobodin, P. Juyal, A. M. McKenna, R. P. Rodgers, A. G. Marshall. Silver Cationization for Rapid Speciation of Sulfur-Containing Species in Crude Oils by Positive Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. *Energy Fuels* **2014**, *28*, 447.

Absorption mode

Evolution of RP with *m***/***z*

Quadripolar detection

- 7 T
- RP150000 m/z
 400 4s transient

UNIVERSITE E. Cho, M. Witt, M. Hur, M. J. Jung, S. Kim. Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil. Anal Chem 2017, 89, 12101.

Limits

- Isomers ?
 - m/z depends only on molecular formula
- Ionization discrimination
 - In complex mixtures charge tend to go to the more basic/acidic species
 - Observation of species with higher ionization efficiency
- Compounds with low ionization efficiency?
- Addition of separation
 - Fractionation
 - Liquid chromatography (on line and off line)
 - Gas chromatography

- Formation of emulsions can be a issue for oil production
- Some oils lead to higher amount of emulsions

Column "translucent" = No interaction Column "brown" = Interaction

HPLC-2 Off line chromatographic separation

Figure 1. Commercial components assembled into the HPLC-2 system. A, Varian 5560 ternary solvent pump; B, Varian 8055 autosampler; C1, 4.6 × 2500 mm DNAP column; C2, 4.6 × 250 mm PAC column; D, HP 8451 diode array spectrophotometer (DAD); E, HP 9133 dual disk drive; F, Isco 1-mm flowcell; G, Kiethey 195A digital voltmeter; H, Applied Chromatography Systems 750/14 evaporative mass detector; V1 and V2, Rheodyne 7040 six-port switching valves.

C1 - dinitroanilinopropyl (DNAP) column for separating the larger rings

C2 - propylaminocyano (PAC) column for separating saturates and mono-aromatics HPLC-2 Ring-Separated C5-Soluble C7-DAO (HC Class)

W. K. Robbins. Quantitative Measurement of Mass and Aromaticity Distributions for Heavy Distillates 1. Capabilities of the HPLC-2 System. J. Chrom. Sci. **1998**, *36*, 457.

aboratoire

D. C. Podgorski, Y. E. Corilo, L. Nyadong, V. V. Lobodin, B. J. Bythell, W. K. Robbins, A. M. McKenna, A. G. Marshall, R. P. Rodgers. Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed. *Energy Fuels* **2013**, *27*, 1268.

Saturated, Aromatics, Resins, Asphaltens

A. Gaspar, E. Zellermann, S. Lababidi, J. Reece, W. Schrader. Characterization of Saturates, Aromatics, Resins, and Asphaltenes Heavy Crude Oil Fractions by Atmospheric Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. *Energy Fuels* **2012**, *26*, 3481.

Planar limit

Y. Cho, Y. H. Kim, S. Kim. Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry. *Anal Chem* **2011**, *83*, 6068.

Orbitrap

UNIVERSITE A. E. Pomerantz, O. C. Mullins, G. Paul, J. Ruzicka, M. Sanders. Orbitrap Mass Spectrometry: A Proposal for Routine Analysis of Nonvolatile Components of Petroleum. *Energy Fuels* **2011**, *25*, 3077.

Ion Mobility

- Drift time (1-30 ms)
- Access to collision cross section
 - Intrinsic property of the ion
 - Predictable
- IM-MS coupling
 - 2D separation
 - Information on isomers
 - Coupling with TOF (acquisition in µs range)
- IM-FTMS coupling
 - Second time scale

P. M. Lalli, Y. E. Corilo, S. M. Rowland, A. G. Marshall, R. P. Rodgers. Isomeric Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy Fuels 2015, 29, 3626.

52

IMS with FTMS

• IMS coupling with FTICR?

- Second time scale
- FAIMS
- TIMS-FTMS

TIMS-FTICR

P. Benigni, R. Marin, F. Fernandez-Lima. Towards unsupervised polyaromatic hydrocarbons structural 57 assignment from SA-TIMS-FTMS data. *Int J Ion Mobil Spectrom* **2015**, *18*, 15

M. Witt, W. Timm. Determination of Simulated Crude Oil Mixtures from the North Sea Using Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, *Energy Fuels* **2015**, *30*, 3707.

Nathalie Carasco (Univ. Paris Saclay)

Tholins

Thèse de Julien Maillard

95 % à 98,4 % d'azote 1,6 % à 5 % de méthane

Vue de l'intérieur du réacteur de l'expérience PAMPRE

11

Que savions nous avant cette étude ?

 Propriétés physiques des Tholins (Carrasco et al. 2009) : Analyse élémentaire, Solubilité,

(Le tholins préparées avec 5% de méthane sont solubles à 35% dans le méthanol)

Absorption IR,

(Validation par rapport aux données de Titan)

• Etude de la fraction soluble en ESI-Orbitrap (Gautier et al. 2014): Polymère, motifs CH₂ et HCN

Postulat fraction soluble représentative de la globalité

Van Krevelen avec x = N/C, y = H/C et z = m/z

Diagrammes de Van Krevelen de la fraction insoluble

• Deuxième motif de croissance

N/C = 0,5; H/C = 0,75 Motif: $C_4H_3N_2$

Comparaison de la saturation des fractions

Polymères et MS

- Polymères
 - Motif de répétition
 - Terminaisons
 - Masse moyenne

- Additits
 - Anti-UV
 - Antioxydants
 - Photostabilisants de type amines encombrées
 - HALS (hindered amine light stabilizants)

$$\begin{split} M_{N} &= \Sigma M_{i} N_{i} / \Sigma N_{i} \\ M_{W} &= \Sigma (M_{i}) N_{i} / \Sigma M_{i} N_{i} \\ \text{polydispersité } D &= M_{W} / M_{N} \end{split}$$

Ionization of Polymers

- Ionization
 - M+•
 - [M+H]⁺, [M+Na]⁺, [M+Met]⁺
- Polymers : large molecular diversity
 - Heteroatoms (PEG, PMMA...)
 - Unsaturated (PB)
 - Aromatics (PS)
 - Saturated (PE, PP...)
- Solubility
 - In MS most ionization imply that the sample is soluble

- Saturated polymers
 - Most common polymers
 - PE (80 million tonnes)
 - PP (55 million tonnes)
- Solubility
 - Insoluble in most solvents
 - Most ionization method requires solutions
- Ionization
 - How to ionize large alkanes ?

Polyolefins

RP=900000

Laboratoire

FT-ICR Analysis

Oxygen number distribution (FT-ICR)

Exp.

mass

Error

(ppm)

76

1

Polymer mix

C. Loutelier Assistant Prof.

H. Lavanant

M. Hubert Research Eng.

I. Schmitz Research Eng.

A. Marcual Engineer

CINIS

Assistant Prof.

