

Traitement de données haute résolution Etalonnage et masses exactes - Exploitation

Frédéric Aubriet

frederic.aubriet@univ-lorraine.fr

Outlook

How to obtain a mass spectrum as representative as possible of the studied sample?

How to obtain a mass spectrum with a good mass measurement accuracy (recalibration methods)?

Assignment of the obtained features: from manual to automatized assignment

How to efficiency visualize the data?

Some examples

To obtain representative features may a an issue with external ion source

Discrimination coming from the ion transfer

Laboratoire de Chimie et Physique Approche Multi-échelles des Milieux Complexes

The accuracy m/z measurement

The fundamental equation in FT-ICR MS

- The m/z ratio is calculated from the cyclotronic frequency
 - In the simplest case, only the value of the magnetic field is considered:

$\omega_c = z.e.B_0/m$

- A more accurate equation takes into account the reduction of ω_c relative to the application of the trapping electric field:

$\omega_o = \omega c - 2\alpha VT/a^2 B_0$

- α $\,$ Parameter depend of the ICR cell geometry $\,$
- $V_{\rm T}~$ Trapping voltage
- A Distance between the trapping plates

The accuracy m/z measurement

Space charge effects (FT-ICR MS)

- Space charge effects come from the electric fields generated by the ions themselves in the ICR cell:
 - 10^6 ions the in the cell lead to the "decrease" of the trapping voltage by 0.05V.
 - A more global equation has to consider the effect of the magnetic field, the trapping potential and the space charges:

$$\omega_{o} = \omega_{c} - 2\alpha V_{T}/a^{2}B_{0} - q\rho G_{i}/\epsilon_{o}B_{0}$$

q Charge

 ρ Charge density

G_i Geometric parameter linked to the shape of the ion clouds

Masselon, Tolmachev, Anderson, Harkewicz, Smith JASMS 2002; 13: 99-106.

The accuracy m/z measurement

Calibration of FT-ICR MS

- For an optimum m/z measurement accuracy, the trapping voltage, the magnetic field, the number of ions have to be as constant as possible (the charge density ρ has to be as low as possible: highly diluted case or total ion current has to be taken into account).

$$\omega_{o} = \omega_{c} - \frac{2\alpha V_{T}/a^{2}B_{0} - q\rho G_{i}/\epsilon_{o}B_{0}}{Constant}$$

$$2\pi f \quad qB_{0}/m \equiv A/(m/z) \qquad B$$
Finally
$$f = K_{1}/(m/z) + K_{2}$$

Calibration and recalibration – FT-ICR MS

Diluted medium

$$f = \frac{K_1}{m_{/Z}} + K_2$$
 $m_{/Z} = \frac{K_1}{f - K_2}$ $m_{/Z} = \frac{A}{f} + \frac{B}{f^2}$

- Correction of the charge density for the i ions

$$f = \frac{K_1}{m_{/Z}} + K_2 + K_3 I_i \qquad m_{/Z} = \frac{K_1}{f - K_2 - K_3 I_i} \qquad m_{/Z} = \frac{A}{f} + \frac{B + CI_i}{f^2}$$

 For average mass spectrum additional correction to take into account the variation of the total ion current

$$f = \frac{K_1}{m_{/Z}} + K_2 + K_3 I_i + K_4 I_{tot} \qquad m_{/Z} = \frac{K_1}{f - K_2 - K_3 I_i - K_4 I_{tot}} \qquad m_{/Z} = \frac{A}{f} + \frac{B + C I_i + D I_{tot}}{f^2}$$

Calibration and recalibration – FT-ICR MS

Equation de Calibration en Orbitrap

- Highly diluted medium (simplest equation)

$$n_{/Z} = \frac{B}{f^2}$$

- Space charge effect created by an amount of Q charges

1

$$m_{/Z} = \frac{B(Q)}{f^2}$$

 To refine the consideration of the space charge effect an additional parameter may be used

$$m_{/Z} = \frac{B(Q)}{f^2} + \frac{C(Q)}{f^3}$$

The accuracy m/z measurement – Orbitrap

Exemple

- The error is depending on the m/z ratio and the ion abundance
- How to proceed
 - Define internal calibrant ions
 - Determine the $\boldsymbol{\epsilon}$ error function for these calibrants

$$\varepsilon_j = \varepsilon \left((m/z)_j; A_j \right) = \frac{(m/z)_{obs,j} - (m/z)_j}{(m/z)_j}$$

- Increase the m/z measurment accurancy by minimization of the ϵ_{j}

• For n calibrant ions, the minimization of ϵ_j leads to the error function which weights each error by ω_i

$$\varepsilon(m/z) = \sum_{j=1}^n \omega_j \varepsilon_j$$

- The estimation of the error function is done by a binomial approach
- The global mass spectrum is divided in n 1 intervals (n calibrants) to define the abundance error function.
- The m/z and A (abundance) variables are splitted

$$\varepsilon_j((m/z); A) = \varepsilon_j(m/z) + \varepsilon_j(A)$$

UNIVERSITÉ DE LORRAINE

Determination of

 $\epsilon(m/z)$

Validation by considering the distribution of one class of compounds (the 843 signals relative to C_xH_yN species)

Reassignment

Kozhinov, Zhurov, Tsybin Anal Chem 2013; 85: 6037-6445.

aboratoire de Chimie et Physique

Determination of

 $\boldsymbol{\varepsilon}(\boldsymbol{A})$

Kozhinov, Zhurov, Tsybin Anal Chem 2013; 85: 6037-6445.

aboratoire de Chimie et Physique

Assignment

Assignment by the only use of the accurate m/z measurement

Elemental Composition Search Report:

Target Mass:

Target m/z = 285.04015 ± 2.00 ppm Charge = -1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
Ν	14.003074	0	1
0	15.994915	0	100
S	31.972071	0	1

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer -Minimum DBE = 0 -Maximum DBE = 100

Search Results:

Number of Hits = 1

m/z	Delta m/z (ppm)	DBE	Formula
285.04046	-1.10	11.5	C ₁₅ H ₉ O ₆ ⁻¹

aboratoire de Chimie et Physique

The double bond equivalent (DBE)

Determination of the number of unsaturation (double bond and ring)

$$DBE = 1 + \frac{\sum_{i=1}^{i_{max}} N_i (V_i - 2)}{2}$$

- N_i : Number of atom i
- V_i: Valence of the atom i

For the "classical" atoms

$$DBE = 1 + \frac{1}{2}(2C + 2Si - H - F - Cl - Br - I + N + P)$$

Bivalent atoms (oxygen, ...) have no effect on the DBE value Integer DBE value: radical ion

Kind, Fiehn BMC Bioinformatics 2007; 8: 105.

The Seven Golden Rules use heuristic rules for limiting the number of formulas only to the most probable ones

1. In respect with the measured m/z, limitation of the number of atoms for a given chemical element (databases)

I able 1: Restrictions for number of elements during formula generation for small molecules based on examination of the DNP and
Wiley mass spectral databases. For each element, the higher count was taken for denominating the element restriction rule #I

Mass Range [Da]	Library	C max	H max	N max	O max	P max	S max	F max	Cl max	Br max	Si max
< 500	DNP	29	72	10	18	4	7	15	8	5	
	Wiley	39	72	20	20	9	10	16	10	4	8
< 1000	DNP	66	126	25	27	6	8	6	11	8	
	Wiley	78	126	20	27	9	14	34	12	8	14
< 2000	DNP	115	236	32	63	6	8	16	11	8	
	Wiley	156	180	20	40	9	14	48	12	10	15
< 3000	DNP	162	208	48	78	6	9	16	П	8	

Kind, Fiehn BMC Bioinformatics 2007; 8: 105.

2. Respect of the Lewis rules

Application of the Lewis rules: valence of the atoms, bonding and non-bonding electrons pairs, octet rule, ... (the main part of the program doesn't part of these rules)

3. The isotopic distribution

The relative abundance of M+1 and M+2 contribution are useful to define the number of carbon atoms and the species including sulfur, chlorine or bromine atom

Kind, Fiehn BMC Bioinformatics 2007; 8: 105.

From the Wiley database (45 000 compounds)

Kind, Fiehn BMC Bioinformatics 2007; 8: 105.

4. Hydrogen/Carbon ratio – Value of the DBE

The H/C is ranging between 0 (graphite) and 3 (cf carbone valence)

In some specific cases, it may be higher

In all cases DBE of the ions \geq 0 (exception: saturated compounds with adduit (NH₄⁺, H⁺)

Kind, Fiehn BMC Bioinformatics 2007; 8: 105. Lobodin, Marshall, Hsu Anal. Chem. 2012; 84: 3410-3416.

Lobodin, Marshall, Hsu Anal. Chem. 2012; 84: 3410-3416.

90% Rule for MW_{max} = 1000 Da

Lobodin, Marshall, Hsu Anal. Chem. 2012; 84: 3410-3416.

Laboratoire de Chimie et Physique Approche Multi-échelles des Milieux Complexes

5. Relative distribution of the elements

Define the more probable ratio between two elements (in respect with chemical compound databases)

Table 2: Common element ratios obtained from 45.000 formulas comprising the Wiley mass spectral database for the mass range 30)
Da – 1500 Da	

Element ratios	Common range (covering 99.7%)	Extended range (covering 99.99%)	Extreme range (beyond 99.99%)
H/C	0.2–3.1	0.1–6	< 0.1 and 6–9
F/C	0-1.5	0–6	> 1.5
CI/C	0–0.8	0–2	> 0.8
Br/C	00.8	0–2	> 0.8
N/C	0-1.3	0-4	> 1.3
O/C	0-1.2	0–3	> 1.2
P/C	0-0.3	0–2	> 0.3
S/C	0–0.8	0–3	> 0.8
Si/C	0–0.5	0-1	> 0.5

6. Maximum number of heteroatoms

Define the more probable amounts of heteroatoms (N, O, P, S) in respect with the Beilstein chemical compound database

Table 3: Multiple element count restriction for compounds < 2000 Da, based on the examination of the Beilstein database and the Dictionary of Natural Products

Element counts He	euristic Rule	DB examples for maximum values
NOPS all > I N NOP all > 3 N OPS all > I O PSN all > I P NOS all > 6 N	< 10, O < 20, P < 4, S < 3 < 11, O < 22, P < 6 < 14, P < 3, S < 3 < 3, S < 3, N < 4 < 19 O < 14 S < 8	$\begin{array}{l} C_{15}H_{34}N_{9}O_{8}PS, \ C_{22}H_{44}N_{4}O_{14}P_{2}S_{2}, \ C_{24}H_{38}N_{7}O_{19}P_{3}S\\ C_{20}H_{28}N_{10}O_{21}P_{4}, \ C_{10}H_{18}N_{5}O_{20}P_{5}\\ C_{22}H_{44}N_{4}O_{14}P_{2}S_{2}, \ C_{16}H_{36}N_{4}O_{4}P_{2}S_{2}\\ C_{22}H_{44}N_{4}O_{14}P_{2}S_{2}, \ C_{16}H_{36}N_{4}O_{4}P_{2}S_{2}\\ C_{59}H_{64}N_{18}O_{14}S_{7} \end{array}$

What about the data treatment for non-targeted analysis?

- Assign a chemical formulae to each signal (up 100,000 peaks).
- Represent the obtained features to allow comparison.

Assignment of the features

Using the six golden rules and the accurate m/z measurement the assignment of very high resolution data is possible. Nevertheless,

- The number of features is huge (thousands of peaks in petroleomic);
- For high m/z ratio, the accuracy of measurement is not enough for an unambiguous assignment;
- The resolution is not always high enough to distinguish each contribution

	0	6	12	18	34	40
$C_{15}H_{27}(CH_2)_nO_3S_2^+$	319.14071	403.23461	487.32851	571.42241	655.51631	739.61021
$C_{15}H_{19}(CH_2)_nN_4O_4^+$	319.14120	403.23508	487.32898	571.42288	655.51678	739.61068
Δ (ppm)	-1.47	-1.17	-0.96	-0.82	-0.72	-0.64

Alternatives have to be found for automatic and iterative assignment

The use of the mass defect

<u>element</u>	<u>Isotope</u>	atomic mass (u)	mass defect	<u>% isotopic</u> composition
hydrogen	чн	1.00783	0.00783	99.9885
	² H	2.01410	0.01410	0.0115
carbon	¹² C	12.00000	0.00000	98.93
	13C	13.00335	0.00335	1.07
nitrogen	¹⁴ N	14.00307	0.00307	99.632
	¹⁵ N	15.00011	0.00011	0.368
oxygen	¹⁶ O	15.99491	-0.00509	99.757
	¹⁷ O	16.99913	-0.00087	0.038
	¹⁸ O	17.99916	-0.00084	0.205
fluorine	¹⁹ F	18.99840	-0.00160	100
phosphorus	³¹ P	30.97377	-0.02623	100
sulfur	³² S	31.97207	-0.02793	94.93
	³³ S	32.97146	-0.02854	0.76
	³⁴ S	33.96787	-0.03213	4.29
chlorine	35CI	34.96885	-0.03115	75.78
	³⁷ CI	36.96590	-0.03410	24.22
arsenic	⁷⁵ As	74.92160	-0.07840	100
bromine	⁷⁹ Br	78.91834	-0.08166	50.69
	⁸¹ Br	80.91629	-0.08371	49.31
yttrium	⁸⁹ Y	88.90585	-0.09415	100
iodine	¹²⁷ I	126.90447	-0.09553	100
terbium	¹⁵⁹ Tb	158.92534	-0.07466	100
holmium	¹⁶⁵ Ho	164.93032	-0.06968	100

Sleno JMS 2012; 47: 226-236.

The use of the Kendrick mass

The Kendrick Mass (KM)

```
KM = measured mass \times \frac{14.00000}{14.01565}
```

 $14,01565 \equiv mass of a CH_2$ Other bases are possible

Kendrick mass defect (KMD)

```
KMD = nominal mass - KM
```

Advantages

- All the alkylated derivate of a given compound have the same KMD.
- KMD is connected to the number of unsaturation.
- The KM et KMD may be calculated with other repeat units (H₂, O, CH₂O,...)

Laboratoire de Chimie et Physique

Distinguishing radical cations from cations

Laboratoire de Chimie et Physique

PAHs and methyl or dimethyl PAHs : M^{+•}

Alkyl PAHs detected as $[M - H]^+$, $[M - CH_3]^+$ or $[M - C_xH_{2x+1}]^+$

The KMD(CH₂) values are tabulated

- for positive and negative ions;
- in respect with the nature and the amounts of heteroatoms;
- the z value defines the unsaturation level:

 $\boldsymbol{\mathsf{C}}_{n}\boldsymbol{\mathsf{H}}_{2n+z}\boldsymbol{\mathsf{X}}$

- the 1 serie is $C_n H_{2n-1}^{-1}$
- the 20 serie is C_nH_{2n-2}O^{•–}
- the $-1O_2$ serie is $C_nH_{2n-2}O_2^-$

Negativ	ve ions
KMD	Series
0.01285	-1
0.01955	-2
0.02542	-1N
0.02625	-3
0.03212	-2N
0.03295	-4
0.03580	-10
0.03882	-3N
0.03965	-5
0.04250	-20
0.04552	-4N
0.04635	-6
0.04836	-1NO
0.04920	-30
0.05222	-5N
0.05305	-7
0.05506	-2NO
0.05590	-40
0.05875	-1O ₂
0.05892	-6N
0.05975	-8
0.06176	-3NO
0.06260	-50
0.06544	-2O ₂
	Negativ CONTRACTOR CONTRACTOR CO

Use of KMD and Mass defect

Petroleomic

Marschall et al. Acc. Chem. Res. 2004; 37: 53-59.

Chlorinated contaminants

Taguchi et al. JASMS 2011; 21: 1918-1921.

Use of Kendrick mass for data assignment

Stepwise analysis – Principle of the main used search algorithms

From the Kendrick mass to the David mass

In complex a mixture, lot of its components are "correlated": their chemical formulae only differ by one or a group of few atoms (on the mass spectrum: a given mass increment)

Principle

- increments which have to be searched
 - 14.01465 $\equiv CH_2$
 - 1.00335 = ${}^{12}C {}^{13}C$ difference
 - 1.00335/n = ${}^{12}C {}^{13}C$ difference (multicharged ion)
 - $30.01056 \equiv OCH_2$
 - ...
- define the error, which has to be taken into account

Grinhut et al. RCM 2010; 24: 2831-2837.

From the Kendrick mass to the David mass

No.	Molecular formula	Theoretical mass	KMD	Mass difference	Group difference	DMS 14.01565	DMS 1.00335 0.501675
C _x H(_{2x}	1)O ₂						
1	C ₅ H ₉ O ₂	101.06025	52.6				
2	$C_7H_{13}O_7^-$	129.09155	52.6	28.0313	C_2H_4		
3	C9H17O7	157.12285	52.6	28.0313	C_2H_4		\land \land \land
	$C_{11}H_{21}O_{2}^{-}$	185.15416	52.6	28.0313	C_2H_4		
	C13H25O2	213.18546	52.6	28.0313	C_2H_4		
	C15H34O2	255.23241	52.6	14.01565	CH ₂	255.23241	
	C ₁₇ H ₃₆ O ₂	269.24806	52.6	14.01565	CH ₂	269.24806	
	C ₁₈ H ₃₈ O ₂	283.26371	52.6	14.01565	CH ₂	283.26371	
	$C_{19}H_{40}O_2^-$	297.27936	52.6	14.01565	CH ₂	297.27936	
0	$C_{20}H_{40}O_2^-$	311.29501	52.6	14.01565	CH ₂	311.29501	
$C_{X}H(_{2X}$	$_{2}) N_{2}O_{2}^{-}$						
11	$C_5H_8N_2O_2^-$	128.05858	84.4				
2	C7H12 N2O2	156.08988	84.4	28.0313	C_2H_4		
13	C ₉ H ₁₆ N ₂ O ₂	184.12118	84.4	28.0313	C_2H_4		
4	C11H20N2O2	212.15248	84.4	28.0313	C_2H_4		
5	$C_{13}H_{24}N_2O_2^-$	240.18378	84.4	28.0313	C_2H_4		
6	C15H28N2O2	268.21508	84.4	14.01565	CH ₂	268.21508	
7	C ₁₆ H ₃₀ N ₂ O ₂	282.23073	84.4	14.01565	CH ₂	282.23073	Mana abargadiana
;	C ₁₇ H ₃₂ N ₂ O ₂	296.24638	84.4	14.01565	CH ₂	296.24638	
	C ₁₈ H ₃₄ N ₂ O ₂	310.26203	84.4	14.01565	CH_2	310.26203	
)	C19H38N2O2	324.27768	84.4	14.01565	CH ₂	324.27768	
C and	$^{13}C C_X H(_{2X-1}) N_2 O_4^-$						di-charged ions
1	12C15H29N1O4	287.20966	111.0	1.00335 (22-21)	Н	287.20966	
1	12C13C1H29N1O4	288.21301	108.8	14.01565 (23-21)	CH ₂	288.21301	288.21301
\$	12C16H31N1O4	301.22531	111.0	1.00335	Н	301.22531	301.22531
	12C13C1H31N1O4	302.22866	108.8	14.01565	CH ₂	302.22866	302.22866
	12C17H33N1O4	315.24096	111.0	1.00335	Н	315.24096	315.24096
,	12C13C1H33N1O4	316.24431	108.8	14.01565	CH ₂	316.24431	316.24431
	12C18H35N1O4	329.25661	111.0	1.00335	н	329.25661	329.25661
,	12C13C1H35N1O4	330.25996	108.8	14.01565	CH ₂	330.25996	330.25996
and	$^{13}C C_{v}H(_{2v,1})N_{1}O_{1}^{2-}$	- All theoretical	masses calc	ulated as if they were	e detected as si	ngly charged m	
)	¹² C ₁₅ H ₂₈ N ₁ O ²⁻	143.10092	58.9		Н	143.10092	143.10092
1	$^{12}C_{13}^{13}C_{14}H_{20}N_{10}O^{2-}$	143.60259	557.8	0.501675 (30-29)	CHa	143.60259	143.60259
-	$^{12}C_{-14}C_{11}C_{28}C_{10}C_{4}$	150 10874	58.9	7.007825 (31-29)	H	150 10874	150 10874
,	$^{12}C^{13}C H N O^{2-}$	150 61042	557.8	0.501675	CH-	150,61042	150,610/2
2	$C_{15}C_1\Pi_{30}N_1O_4^2$	150.01042	59.0	7.007825	LT12	157 11659	150.01072
,	$C_{17} H_{32} N_1 O_4^{*-}$	157.11058	20.9	7.007625	п	157.11058	107.11000
-	$-C_{16}^{10}C_1H_{32}N_1O_4^{2-1}$	157.01824	50.0	0.501675		157.01824	Grinhut <i>et al. RCM 2010; 24: 2831-28</i>
5	$^{12}C_{18}H_{34}N_1O_4^{2-}$	164.12439	58.9	7.007825	Н	164.12439	104.124.39
b	"C ¹³ ₁₇ C ₁ H ₃₄ N ₁ O ²⁻ ₄	164.62607	557.8	0.501675	CH ₂	164.62607	Chourse 3 - 6 avril 2013 Cabburg 3 - 6 avril 2013

From the Kendrick mass to the David mass

Page 43

CINIS

Laboratoire de Chimie et Physique Approche Multi-échelles des Milieux Complexes

Application to the NOM analysis

CINIS

aboratoire de Chimie et Physique

Application to the NOM analysis

Identification of only 10 repetitive units

- CH₂, OCH₂, CO, H₂, COO, H₂O, O₂, NH₃
- CH₄/O
- $O_2 CH_4$

Use of a network based on the difference of mass for the assignment

Same approach than David mass approach but without the prelimary definition of units

- Determination of the ion charge (m/z difference of 1.00335/n)
- Mono-isotopic peak list
- Generation of a matrice corresponding to the mass difference between each feature of the peak list
- Determination of the probability for each observed difference of mass
- TMDS spectrum (total mass difference statistics)
- Use of a cutoff for the low statistic

Kunenkov et al. Anal Chem 2009; 81: 10106-10115.

Stepwise assignment on the basis of the observed mass differences

- Increment of 2.016: addition of two hydrogen atoms
- Increment de 0.036: oxygen atom CH_4 switching

Kunenkov et al. Anal Chem 2009; 81: 10106-10115.

CINIS

Laboratoire de Chimie et Physique Approche Multi-échelles des Milieux Complexes

Use of second and third KMD orders

CH₂ first order mass defect

 $KM = measured mass \times \frac{14.00000}{14.01565}$

 $KMD(CH_2) = nominal mass - KM$

- We will consider $C_{12+n}H_{26+2n-2z}$ (n = 0 10 et z = 1 5)
- It is preferable to take

$$M_{CH_{2}}^{1}(ion) = \frac{arrondi(M_{CH_{2}}^{0}(CH_{2}))}{M_{CH_{2}}^{0}(CH_{2})} \times M^{0}(ion)$$

For compouds with a positive KMD

 $MD_{CH_2}^1 = M_{CH_2}^1 - Plafond(M_{CH_2}^1, 1)$

• For compouds with a negative KMD

 $MD_{CH_2}^1 = Plafond(M_{CH_2}^1, 1) - M_{CH_2}^1$

Roach et al. Anal Cnem 2011; 83: 4924-4929.

Use of second and third KMD orders

Second order H_2 / O mass defect calculation

Use of second and third KMD orders

Third order mass defect O / H₂

1
$$MD^{3}_{CH_{2},H_{2},O}(ion) = mod[MD^{2}_{CH_{2},H_{2}}(ion), MD^{2}_{CH_{2},H_{2}}(O)]$$

2 $MD^{3}_{CH_{2},O,H_{2}}(ion) = mod[MD^{2}_{CH_{2},O}(ion), MD^{2}_{CH_{2},O}(H_{2})]$

Be careful about the aliased points especially for **1**, mass defects are ranging from 0 to 1 according the used formulae, they have to be corrected by 1, 2, ... to avoid aliasation

Representation of the data

UNIVERSITÉ DE LORRAINE

Representation of the data – Kendrick map

Laboratoire de Chimie et Physique Approche Multi-échelles des Milieux Complexes

NIVERSITÉ

Representation of the data DBE versus # C

Nombre d'atomes de Carbone

Representation of the data DBE versus m/z

Representation of the data Van Krevelen diagram

Representation of the data Aromaticity index

Study of cigarette smoke by ESI or LDI

Complementarity of ESI and LDI

Laboratoire de Chimie et Physique

2D Van Krevelen Diagrams

ESI-FTICRMS

3D Van Krevelen Diagram

Proposition thèse MESR

Nouvelles approches pour l'étude de particules atmosphériques et de leur vieillissement par spectrométrie de masse ultra-haute résolution

Aubriet Frédéric – Sébastien Schramm

<u>frederic.aubriet@univ-lorraine.fr</u> – <u>sebastien.schramm@univ-lorraine.fr</u>

